Принцип действия электрических аппаратов. Определение и классификация электрических аппаратов. Вопросы для самопроверки

Страница 1 из 18

ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Электрический аппарат – это электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля, измерения, защиты, управления и регулирования установок, предназначенных для передачи, преобразования, распределения и потребления электроэнергии.
Понятие «электрический аппарат» охватывает очень большой круг бытовых и промышленных устройств. Многообразие самих аппаратов и выполняемых ими функций, совмещение в одном аппарате нескольких функций не позволяют строго классифицировать их по одному какому-то признаку. Представляется целесообразным рассмотреть их по назначению – основной функции, выполняемой аппаратом.

В этом случае они могут быть подразделены на следующие группы:

  • Коммутационные – предназначены для включения и отключения

электрической цепи. (К ним можно отнести – разъединители, выключатели высокого и низкого напряжения, рубильники, переключатели и т.д.).

  • Аппараты защиты – для защиты электрических цепей от ненормальных

режимов работы (к.з., перегрузка). Сюда относятся предохранители высокого и низкого напряжения, различного рода реле.

  • Пускорегулирующие аппараты – для управления электроприводами и

другими промышленными потребителями электроэнергии (двигатели – пуск, остановка, регулирование скорости вращения). Это контакторы, пускатели, реостаты и т.д.

  • Ограничивающие аппараты – для ограничения токов к.з. (реакторы) и перенапряжений (разрядники).
  • Контролирующие аппараты – для контроля заданных электрических и

неэлектрических параметров. Сюда о тносятся различного рода реле и датчики.

  • Регулирующие аппараты – для автоматической и непрерывной

стабилизации и регулирования заданных параметров. Это различные стабилизаторы и регуляторы.

  • Измерительные аппараты – для изоляции цепей первичной коммутации от цепей измерительных приборов и релейной защиты. (Измерительные трансформаторы тока и напряжения).
  • Аппараты, предназначенные для выполнения механической работы – подъемные и удерживающие электромагниты, электромагнитные тормоза, муфты.

Любой аппарат состоит из трех элементов: воспринимающего, преобразующего и исполнительного.
По принципу действия воспринимающего элемента:
Электромагнитные, магнитоэлектрические, индукционные, электродинамические, поляризованные, полупроводниковые, тепловые, электронные, магнитные и т.д.
По принципу действия исполнительного элемента:

  • контактные
  • бесконтактные

В пределах одной группы или типа аппараты различаются:

  • по напряжению : - высокого напряжения (свыше 1000 В)

Низкого напряжения (до 1000 В)

  • по роду тока : - постоянного тока,

Переменного тока промышленной частоты,
- переменного тока повышенной частоты

  • по величине тока: - слаботочные (до 5А)

Сильноточные (свыше 5А)

  • по режиму работы: - продолжительного

Кратковременного
- повторно-кратковременного

  • по времени срабатывания: - безынерционные (до 3 мс) быстродействующие (3-50 мс), нормального исполнения (50-150 мс)

замедленные (150 мс-1 с), реле времени (свыше 1 с)

  • по способу управления: - автоматические

Неавтоматические (ручного управления)

  • по роду защиты от окружающей среды: в исполнении открытом, защищенном, водозащищенном, взрывозащищенном и т.д

ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЭЛЕКТРИЧЕСКИМ АППАРАТАМ

  • При нормальном режиме работы температура токоведущих частей (элементов) не должна превышать допустимую (значений, рекомендуемых соответствующим ГОСТ или другими нормативными документами).
  • Аппараты должны выдерживать в течении определенного времени термическое воздействие токов К.З. без каких-либо деформаций, препятствующих их дальнейшему использованию (высокая износостойкость ).
  • Изоляция аппарата должна быть рассчитана с учетом возможных перенапряжений, возникающих в процессе эксплуатации, с некоторым запасом, учитывающим её «старение».
  • Контакты электрических аппаратов должны быть способны многократно включать и отключать токи рабочих режимов.
  • Аппараты должны иметь высокую надежность и точность, необходимое быстродействие, минимум массы, малые габариты, дешевизну, удобство в эксплуатации.

НАГРЕВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ
ИСТОЧНИКИ НАГРЕВА:

  • Джоулево тело, выделяющееся в обмотках аппарата. (Это количество тепла, выделяемое в приемнике, которое пропорционально его R, t и I2, Вт*с=Дж).
  • Нагрев магнитопровода за счет потерь на перемагничивание и гистерезис.
  • Диэлектрические потери в изоляционных материалах.

НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ТЕПЛОВЫХ ЯВЛЕНИЙ В
ЭЛЕКТРИЧЕСКИХ АППАРАТАХ

Расширение тел при нагреве - (биметалические тепловые реле – электроутюг).
Создание неблагоприятных тепловых условий в одном аппарате, его разрушение и в результате защита других аппаратов (плавкие предохранители).
Преобразование электрической энергии отключаемой цепи в тепловую энергию и рассеивание этого тепла с помощью дугогасительного устройства в окружающую среду.

→ Основные определения

1. Основные определения и классификация электрических аппаратов
1.1. Основные определения
Электрическими аппаратами (ЭА) называются электро технические устройства для управления. потоками энергии и информации, режимами работы, контроля и защиты технических систем и их компонентов .
Электрические аппараты служат для коммутации, сигнализации и защиты электрических сетей и электроприемников, а также управления электротехническими и технологическими установками и находят исключительно широкое применение в различных областях народного хозяйства: в электроэнергетике, в промышленности и транспорте, в аэрокосмических системах и оборонных отраслях, в телекоммуникациях, в коммунальном хозяйстве, в бытовой технике и т. д. При этом в каждой из областей диапазон используемой номенклатуры аппаратов очень широкий. Можно определенно сказать, что не существует области, связанной с использованием электрической энергии, где бы не применялись электрические аппараты.
В основе функционирования большинства видов электрических аппаратов лежат процессы коммутации (включения и отключения) электрических цепей. К основным явлениям, сопровождающим работу всякого электрического аппарата, относятся: процессы коммутации электрических цепей, электромагнитные и тепловые процессы. Под электромагнитными процессами понимают электромеханические и индукционные явления, электромагнитные взаимодействия элементов аппарата и др.
Тепловые процессы оказывают непосредственное влияние на работу аппарата и зависят от режима работы аппарата. Установлены для электрических аппаратов три вида режимов работы:
- длительный (в этом режиме при длительном прохождения тока аппарат нагревается до установившегося значения температуры);
- кратковременный (в этом режиме при отключенном состоянии между отдельными включениями температура нагрева аппарата снижается практически до температуры окружающей среды);
- повторно-кратковременный (температура нагрева за время паузы тока не успевает снизиться до температуры окружающей среды).
Два последних режима характеризуются относительной продолжительностью включения ПВ, %. Стандартные значения ПВ: 15; 25; 40; 60%.
1.2. Классификация электрических аппаратов
Исключительно широкий диапазон областей применения электрических аппаратов определяет многообразие видов их классификации.
Электрические аппараты классифицируют по признакам:
1) по величине рабочего напряжения - низковольтные (до 1000 В) и высоковольтные (более 1000 В);
2) по величине рабочего или коммутируемого тока - слаботочные (аппараты управления, защиты, сигнализации) и сильноточные, используемые в силовых цепях;
3) по выполняемой функции:
- коммутирующие аппараты: выключатели, разъединители, контакторы, магнитные пускатели;
- управления, защиты, сигнализации: реле различного типа, путевые и конечные выключатели (контактные и бесконтакные);
- командные: кнопки управления, ключи, командоконтроллеры и командоаппараты;
- аппараты защиты: разрядники, плавкие предохранители. К электрическим аппаратам относят также пускорегулиро вочные сопротивления.
По признаку коммутации и элементной базы электрические аппараты разделяются на:
- электромеханические
- статические
- гибридные.
Электромеханические аппараты отличаются наличием в них подвижных частей. Электромеханические аппараты имеют подвижную и неподвижную контактные системы, осуществляющие коммутацию электрических цепей.
Статические аппараты выполняются на основе силовых полупроводниковых приборов: диодов, тиристоров, транзисторов, а также управляемых электромагнитных устройств: магнитных усилителей, дросселей насыщения и др. Аппараты этого вида обычно относятся к силовым электронным устройствам, так как используются для управления потоками электрической энергии.
Гибридные электрические аппараты представляют со бой комбинацию электромеханических и статических аппаратов.
По функциональному назначению различают:
- аппараты управления НИ и ВН;
- аппараты распределительных устройств низкого напряжения;
аппараты автоматики.
Электрические аппараты классифицируют также:
по напряжению: аппараты НН - низкого (до 1000 В) И аппараты ВН - высокого (от единиц до тысяч киловольт) напряжения;
ПО значению коммутируемого тока: слаботочные аппараты (до 5 А) и сильноточные (от 5 А до сотен кило-ампер);
по роду тока: постоянного и переменного;
по частоте источника питания: аппараты с нормальной (до 50 Гц) и аппараты с повышенной (от 400 Гц до 10 кГц) частотой;
по роду выполняемых функций: коммутирующие, регулирующие, контролирующие, измеряющие, ограничивающие ПО току или напряжению, стабилизирующие;
- по исполнению коммутирующего органа: контактные и бесконтактные (статические), гибридные, синхронные, без дуговые.
1.3. Аппараты высокого напряжения
Аппараты высокого напряжения по функциональному признаку делятся на следующие виды:
- коммутационные аппараты (выключатели, выключатели нагрузки, разъединители);
- измерительные аппараты (трансформаторы тока и напряжения, делители напряжения);
- ограничивающие аппараты (предохранители, реакторы, разрядники, нелинейные ограничители перенапряжений);
- компенсирующие аппараты (управляемые и неуправляемые шунтирующие реакторы);
- комплектные распределительные устройства.
К электрическим аппаратам относят также различные виды датчиков, имеющих законченное конструктивное исполнение. Назначением большинства датчиков, относящихся к электрическим аппаратам, является преобразование параметров раз личных по природе физических величин в электрические сигналы информационного характера. Такие датчики широко ис пользуются в различных системах автоматического управления.
1.4. Электрические аппараты управления
Электрические аппараты управления предназначены для управления режимом работы электрооборудования и подразделяются на следующие виды:
- контакторы;
- пускатели;
- контроллеры;
- электрические реле управления;
- командоаппараты;
- рубильники;
- электромагниты управления
- электроуправляемые муфты.
Контакторы служат для многократных включений и отключений электрической цепи при токах нагрузки, не превышающих номинальный, а также для редких отключений при токах перегрузки (обычно 7-10-кратных по отношению к номинальному). Род тока определяет конструктивные особенности контакторов. Поэтому контакторы переменного и постоянного токов обычно не взаимозаменяемые. Однако имеются контакторы, совмещающие в себе возможности коммутации как постоянного, так и переменного токов.
Пускатели предназначены для включения и отключения двигателей и отличаются от контакторов в основном наличием встроенной системы, осуществляющей защиту двигателей от токов перегрузки.
Контроллер - это электрический аппарат с ручным управлением, предназначенный для изменения схемы подключения электродвигателя к системе электропитания, а также для коммутации обмоток трансформаторов.
Электрические реле управления работают в схемах автоматического управления электроприводами. Коммутируемые токи не превышают 10 А, и поэтому дугогасительные устройства в них не применяются.
Командоаппараты предназначены для переключений в цепях управления силовых электрических аппаратов (контакторов, пускателей).
Рубильники рассчитаны практически на весь диапазон номинальных токов. Отключение электрической цепи рубильником обычно производится в обесточенном состоянии или при небольших токах.
Электромагниты управления применяются в исполнительных механизмах различного промышленного назначения, а также в качестве самостоятельного функционального блока.
Электроуправляемые муфты предназначены для передачи потока механической энергии или крутящего момента
ог ведущей части муфты к ее ведомой части.
В зависимости от рода связи между ведущей и ведомой
частями муфты подразделяются на три основных вида:
- электромагнитные муфты с механической связью;
- электромагнитные порошковые муфты;
- индукционные муфты.
1.5. Аппараты распределительных устройств
Аппараты распределительных устройств низкого напряжения (до 1000 В) предназначены для защиты электрооборудования от различных аварийных режимов, связанных с появлением токов перегрузки и короткого замыкания, недопустимого снижения напряжения, появлением токов утечки на землю при повреждении изоляции, обратных токов и т. п.). Эти аппараты подразделяются на автоматические выключатели и низковольтные предохранители.
Автоматические выключатели (автоматы) включают ся и отключаются относительно редко. Автоматы на разные номинальные токи способны отключать большие токи короткого замыкания (до 150 кА). При этом отключение происходит с выраженным токоограничивающим эффектом. Автоматы имеют обычно сложные контактно-дугогасительные устройства.
Низковольтные предохранители служат для защиты электрооборудования от больших токов перегрузки и токов короткого замыкания. Различают предохранители с открытой плавкой вставкой, закрытые (плавкая вставка размещена в патроне) и предохранители с наполнителем, в качестве которого используется кварцевый песок, мел и др.
1.6. Электрические аппараты автоматики
Электрические аппараты автоматики - это технические средства, с помощью которых выполняются различные операции с сигналами (получение и сбор, считывание, формирование, обработка, преобразование, адресование, сравнение, хранение, размножение, изменение уровня, логические операции и т. п.), если хотя бы один из сигналов (на входе или выходе аппарата) электрический .
Соответствующие операции с неэлектрическими или электрическими сигналами выполняются в тракте переработки информации.
Сигналом называется воспринимаемая или передаваемая аппаратом информация о вещественном или энергетическом параметре. Под вещественным параметром понимают размер, плотность, цвет и т. п. Под энергетическим параметром - скорость, давление, температура, напряжение, ток, сокр, КПД.
Сигналы могут быть периодическими и непериодическими, непрерывными и дискретными.
Тракт переработки информации включает, как правило, следующие устройства:
- первичные преобразователи (датчики), преобразующие контролируемую (входную, как правило, неэлектрическую) величину в выходной электрический сигнал;
- распределители (коммутаторы), распределяющие информацию в виде электрических сигналов по различным каналам связи;
- сумматоры, логические элементы, регулирующие органы, обрабатывающие информацию, поступающую по различным каналам (входам) в виде электрических сигналов и вырабатывающие команду (сигнал) для исполнительных устройств;
- исполнительные аппараты.
К последнему типу устройств относятся собственно электрические реле автоматики, электрогидровентили, электрогидрокраны, электроклапаны, магнитные опоры и подвесы, задвижки и др.
Электрические реле автоматики - это устройства для защиты электрических систем, сетей и цепей, а также других объектов от несанкционированных режимов работы; для выработки сигналов, оповещающих о приближении нештатных ситуаций и об их наступлении; для усиления, размножения, обработки, кодирования и запоминания поступающей информации.
К разновидностям электрических реле автоматики относятся герконовые реле, основу которых составляют герметизированные магнитоуправляемые контакты (герконы), а также релейные аппараты с механическим управлением (входом) и электрическим выходом: кнопки, ключи, клавиатуры, тумблеры, микровыключатели.

На всех этапах производства, передачи, распределения и потребления электрической энергии практически во всех отраслях народного хозяйства важную роль играют электрические аппараты.

Электрические аппараты (контакторы, пускатели, электромагниты) входят в состав автоматических, полуавтоматических и ручных систем управления электроэнергетическими установками, электроприводами, устройствами электрического освещения, электротехнологическими установками и т. д. Их применяют для управления пуском, регулирования частоты вращения и осуществления электрического торможения электродвигателей. С помощью электрических аппаратов производится регулирование токов и напряжений генераторов. Они осуществляют функции контроля и защиты установок, потребляющих электроэнергию.

Таким образом, использование электромеханических устройств позволяет управлять по заданной программе работой электрических и неэлектрических объектов, а также защищать эти объекты от нежелательных режимов - перегрузок, перенапряжений, недопустимо больших токов и т. д.

Многие электрические аппараты предназначаются для выполнения какой-либо одной функции в системе управления или защиты, однако имеются и многофункциональные аппараты.
Работа электромеханических устройств в системах автоматики основывается на ряде физических явлений: взаимодействии ферромагнитных тел в магнитном поле, силовом взаимодействии проводника с током и магнитного поля, возникновении ЭДС в катушках и вихревых токов в массивных телах из электропроводящего материала при появлении переменного магнитного поля, тепловом действии электрического тока и др.

Основными частями электрических аппаратов являются

  • электрические контакты (неподвижные и подвижные, главные и вспомогательные),
  • механический или электромагнитный привод контактной группы (приведение в соприкосновение и прижатие подвижных и неподвижных контактов),
  • рукоятки (кнопки) управления и рабочие обмотки.
    Электрический аппарат срабатывает, т. е. осуществляет замыкание и размыкание контактов или соединение подвижной и неподвижной частей электромагнитного механизма, под воздействием:

1) обслуживающего персонала, нажимающего на рукоятки (кнопки) управления; в этом случае аппарат называют ручным или полуавтоматическим;
2) электрических величин, характеризующих работу контролируемого (управляемого) объекта, изменяющих или на рабочих обмотках; в этом случае аппарат называют автоматическим.

В зависимости от функций, которые должен обеспечить аппарат, к нему могут предъявляться различные требования, но главными требованиями являются надежность и точность работы: надежность соединения контактов, малое электрическое сопротивление в месте соединения контактов, точность зависимости момента срабатывания от значения управляющего тока или напряжения.

По назначению различают следующие электрические аппараты

1) коммутационые (разъединители, выключатели, переключатели);
2) защитные, основным назначением которых является защита электрических цепей от недопустимо больших токов, перенапряжений, снижения и х д. (предохранители, реле защиты);
3) пускорегулирующие, предназначенные для управления электроприводами и другими промышленными потребителями электроэнергии (контакторы, пускатели, реле управления);
4) контролирующие и регулирующие, предназначенные для контроля и поддержания в заданном диапазоне основных параметров процесса (датчики и реле);
5) электромагниты (силовые), служащие для удерживания или
перемещения объектов в производственном либо управленческом
процессе.

В данной главе рассматриваются электрические аппараты (реле, пускатели, контакторы и электромагниты) и некоторые схемы управления и регулирования, использующие электромеханические устройства.

Прежде всего, рассмотрим особенности работы электрических контактов и работу электромагнитного механизма - привода контактной группы электрических аппаратов.

Контакторы и магнитные пускатели - назначение, категории применения, основные параметры. Серии контакторов постоянного и переменного тока, их конструкции и условия работы. Вакуумные контакторы. Магнитные пускатели, условия их работы и конструкция. Схемы нереверсивного и реверсивного пускателей. Выбор контакторов и пускателей .

Автоматические выключатели. Назначение, устройство и принцип действия универсальных и установочных автоматов, виды расцепителей, роль механизма свободного расцепления. Быстродействующие автоматы. Автоматы гашения поля. Выбор автоматов .

Рубильники и переключатели .

Предохранители низкого и высокого напряжения Принцип действия и условия работы плавких вставок. Конструкции предохранителей, времятоковая характеристика. Быстродействующие предохранители для защиты полупроводниковых приборов. Выбор предохранителей. Предохранители высокого напряжения ..

Контроллеры, командоаппараты и реостаты - назначение, конструкции, схемы. Виды резисторов и их выбор .

Электромагнитные муфты - фрикционные, ферропорошковые, гистерезисные и индукционные .

7.1. Методические указания

При изучении каждого типа электрических аппаратов необходимо усвоить следующий круг вопросов: назначение и принцип действия аппарата, его разновидности, устройство и электрическая схема; требования к нему; обозначение аппарата и его элементов на схемах; назначение и устройство отдельных узлов аппарата; материалы, применяемые для изготовления важнейших деталей; основные параметры аппарата, технические данные, режимы работы, его достоинства и недостатки; схемы замещения, характеристики (в графическом изображении); основные количественные зависимости (формулы), характеризующие работу аппарата и его свойства.

Необходимо также обратить внимание на отличия одних аппаратов от других, например, автоматов от контакторов, командоконтроллеров от силовых контроллеров, реостатов от резисторов. Нужно уяснить взаимодействие аппаратов, используемых в схемах автоматического управления, например, контакторов - с командоаппаратами, реле, резисторами.

Следует обратить внимание на командоаппараты, основанные на использовании герконов и оптронов.

Требуется также хорошо ознакомиться с устройством хотя бы одного промышленного образца аппарата каждого типа (контактор постоянного тока, магнитный пускатель, командоконтроллер и т.д.) по рисункам и чертежам из литературы, каталогам на промышленное электрооборудование.

Не нужно стараться заучить численные значения параметров аппарата по справочным и каталожным данным, достаточно иметь представление о порядке этих величин.

Электрическими аппаратами называются электротехнические устройства для управления потоками энергии и информации, режимами работы, контроля и защиты технических систем и их компонентов. Электрические аппараты в зависимости от элементной базы и принципа действия разделяются на электромеханические и статические.

К электромеханическим аппаратам относятся технические устройства, в которых электрическая энергия преобразуется в механическую либо механическая энергия в электрическую.

Электромеханические аппараты применяются почти во всех автоматизированных системах. Некоторые системы полностью строятся на электромеханических аппаратах. Например, схемы автоматизации пуска, реверса и торможения в нерегулируемом электроприводе состоят в основном из таких электромеханических устройств, как реле и контакторы. Электромеханические аппараты применяются в качестве датчиков, усилителей, реле, исполнительных органов и т. д. Входные и выходные величины этих устройств могут быть как механическими, так и электрическими. Однако в них должно обязательно осуществляться взаимное преобразование механической энергии в электрическую и наоборот.

Статические аппараты выполняются на основе электронных компонентов (диодов, тиристоров, транзисторов и др.), а также управляемых электромагнитных устройств, в которых связь входа и выхода осуществляется через магнитное поле в ферромагнитном сердечнике. Примерами таких устройств могут служить обычный трансформатор из электротехнической стали и магнитный усилитель.

Основой функционирования большинства видов электрических аппаратов (автоматических выключателей, контакторов, реле, кнопок управления, тумблеров, переключателей, предохранителей и др.) являются процессы коммутации (включение и отключение) электрических цепей.

Другую многочисленную группу электрических аппаратов, предназначенных для управления режимами работы и защиты электромеханических систем и компонентов, составляют регуляторы и стабилизаторы параметров электрической энергии (тока, напряжения, мощности, частоты и др.). Электрические аппараты этой группы функционируют на основе непрерывного или импульсного изменения проводимости электрических цепей.

Рассмотрим некоторые виды электрических аппаратов.

Контактор – это электрический аппарат, предназначенный для коммутации силовых электрических цепей как при номинальных токах, так и при токах перегрузки.

Магнитный пускатель – это электрический аппарат, предназначенный для пуска, остановки, реверсирования и защиты электродвигателей. Его единственное отличие от контактора – наличие устройства защиты (обычно теплового реле) от тепловых перегрузок.

Бесперебойная работа асинхронных двигателей в значительной степени зависит от надежности пускателей. Поэтому к ним предъявляются высокие требования в отношении износостойкости, коммутационной способности, четкости срабатывания, надежности защиты двигателя от перегрузок, минимального потребления мощности.

В крановых механизмах широко применяются контроллеры, которые управляют двигателями малой и средней мощности, и командоконтроллеры (двигатели большой мощности).

Контроллер представляет собой аппарат, с помощью которого осуществляются необходимые переключения в цепях двигателей переменного и постоянного тока. Переключения осуществляются вручную поворотом маховика.

Командоконтроллер по принципу действия не отличается от контроллера, но имеет более легкую контактную систему, предназначенную для переключений в цепях управления.

Реле называется такой электрический аппарат, в котором при плавном изменении управляющей (входной) величины происходит скачкообразное изменение управляемой (выходной) величины.

В различных системах автоматизированного электропривода широкое распространение получили электромагнитные реле. Их используют в качестве датчиков тока и напряжения, датчиков времени, для передачи команд и размножения сигналов в электрических цепях. В качестве исполнительных устройств они применяются в датчиках технологических параметров различных машин и механизмов.

Магнитоуправляемый контакт (геркон) – это контакт, изменяющий состояние электрической цепи посредством механического замыкания или размыкания ее при воздействии управляющего магнитного поля на его элементы. Герконы обладают повышенным быстродействием, а также, вследствие, своих конструктивных особенностей, надежностью работы, поэтому они нашли широкое применение в автоматических системах. На их базе создают реле различного назначения, датчики, кнопки и т. п.

Исполнительное устройство – это устройство, осуществляющее перемещение исполнительного органа или силовое воздействие на этот орган в соответствии с заданными функциями и при подаче соответствующих сигналов на обмотки управления. Наиболее часто электромеханические исполнительные устройства применяются для преобразования электрического сигнала в перемещение подвижной части устройства. Примерами являются электромагнитные клапаны, электромагнитные муфты, электромагнитные защелки, задвижки и т. п.

Все элементы аппаратов имеют установленные графические изображения и названия, часть из которых приведена в табл.

Условные обозначения элементов аппаратов

Наименование Обозначение
Выключатель кнопочный: с замыкающим контактом
с размыкающим контактом
Выключатель однополюсный
Контакт коммутационного устройства: замыкающий
размыкающий
переключающий
Контакт для коммутации сильноточной цепи: замыкающий
размыкающий
замыкающий дугогасительный
размыкающий дугогасительный
Контакт замыкающий с замедлителем, действующим при срабатывании
Реле электрическое с замыкающим, размыкающим и переключающим контактом

Положение контактов аппаратов, изображаемых на схемах управления, при отсутствии внешнего воздействия соответствует их нормальному состоянию. Контакты аппаратов подразделяют на замыкающие, размыкающие и переключающие. В схемах управления электроприводом различают силовые или главные цепи, по которым подается электрический ток к электродвигателям, а также вспомогательные, к которым относятся цепи управления, защиты и сигнализации.

Электроприводы насосов,

Вентиляторов, компрессоров

В современной технике большой класс составляют машины, предназначенные для подачи жидкостей и газов, которые подразделяются на насосы, вентиляторы и компрессоры. Основными параметрами, характеризующими работу таких машин, являются создаваемые ими подача (производительность), давление и напор, а также энергия, сообщаемая потоку их рабочими органами.

Обычно данные системы электропривода подразделяют на несколько групп:

1) Насосы, вентиляторы, компрессоры центробежного типа, статическая мощность на валу которых меняется пропорционально кубу скорости, если потерями холостого хода можно пренебречь и отсутствует противодавление, т. е. это механизмы с так называемой вентиляторной характеристикой. Это наиболее распространенная группа;

2) Различные насосы и компрессоры поршневого типа, мощность на валу которых изменяется по синусоидальному закону в зависимости от угла поворота кривошипа. У поршневых насосов одинарного действия подача осуществляется только при движении поршня вперед, при обратном ходе подача отсутствует;

3) Различные насосы и компрессоры поршневого типа двойного действия. Подача осуществляется при ходе поршня в обе стороны.

Регулируемый электропривод механизмов с вентиляторным моментом

В установках, требующих плавного и автоматического регулирования подачи, электропривод выполняют регулируемым .

Характеристики механизмов центробежного типа создают благоприятные условия работы регулируемого электропривода как в отношении статических нагрузок, так и требуемого диапазона регулирования скорости. Действительно, при уменьшении скорости, по крайней мере квадратично, снижается и момент сопротивления на валу двигателя. Это облегчает тепловой режим двигателя при работе на пониженной скорости. Из законов пропорциональности вытекает, что требуемый диапазон регулирования скорости при условии отсутствия статического напора не превышает заданный диапазон изменения подачи

Если статический напор не равен нулю, то для изменения подачи от нуля до номинального значения необходим диапазон регулирования скорости

где - напор, развиваемый механизмом при .

В среднем для регулируемых механизмов центробежного типа требуемый диапазон регулирования скорости обычно не превосходит 2:1. Отмеченные особенности данных механизмов и невысокие требования в отношении жесткости механических характеристик позволяют успешно применять для них простые схемы регулируемого асинхронного электропривода.

Для установок небольшой мощности (7…10 кВт) задача решается с помощью системы регулятор напряжения – асинхронный двигатель с короткозамкнутым ротором. В качестве регуляторов напряжения чаще всего используются тиристорные коммутаторы. Такие системы нашли применение в комплексах вентиляторного оборудования, предназначенных для обеспечения требуемого воздухообмена и создания необходимых температурных условий в животноводческих и птицеводческих помещениях в соответствии с зооветеринарными нормами.

В установках, где по условиям эксплуатации допустимо применение асинхронного двигателя с фазным ротором возможности регулируемого электропривода расширяются. Механические характеристики данного привода обеспечивают устойчивую работу в достаточно большом диапазоне скоростей при разомкнутой системе электропривода.

В ряде случаев применяется регулирование скорости механизмов с приводом их асинхронными или синхронными двигателями. При этом между двигателями и производственным механизмом устанавливается гидромуфта или асинхронная муфта скольжения, позволяющая изменять скорость производственного механизма, не изменяя скорости двигателя.

Для примера рассмотримэлектрическую схему автоматизации вентиляторной установки .

Схема управления асинхронным короткозамкнутым двигателем М вентилятора, расположенного в машинном зале и предназначенного для независимой вентиляции крупных электрических машин показана на рис. 4.13. Управление вентилятором осуществляется со щита с помощью ключа управления К1 , имеющего четыре контакта и рукоятку с самовозвратом. Ключ К2 служит для разрешения или запрещения включения вентилятора на месте установки, когда нет надобности в его работе.

Схема работает следующим образом. Ключ К2 устанавливается в положение Р (разрешено). Включается автомат В2 цепей управления и автомат В1 главных цепей (его контакт в цепи самоблокировки пускателя замыкается). Загорается зеленая лампа Л3 (двигатель отключен). Для пуска двигателя М ключ К1 переводится из нулевого положения 0 в пусковое П . при этом включается магнитный пускатель К , ставится на самопитание и главными контактами включает двигатели в сеть. Зеленая лампа ЛЗ гаснет, красная лампа ЛК загорается - двигатель включен.

Рукоятка ключа К1 отпускается, и ключ возвращается в нулевое положение, на котором контакт 2 ключа замыкается, а контакт 1 остается замкнутым.

В схеме предусмотрено опробование вентилятора на месте его установки с помощью кнопки КнО . Предусмотрена также блокировка (с помощью замыкающего блок-контакта К ), не позволяющая включать вентилируемую машину до пуска вентилятора. Защита при коротких замыканиях или перегрузке двигателя М осуществляется автоматом В1 с комбинированным расцепителем. А нулевая защита - пускателем К (новый пуск двигателя не возможен, пока рукоятка ключа К1 не будет поставлена в пусковое положение П ) . При отключении вентилятора в результате действия защиты включается предупредительный сигнал, так как контакты 3 и 4 ключа К1 при этом замкнуты. При ручном отключении вентилятора путем перевода, а затем отпускании рукоятки ключа К1 в положении С предупредительный сигнал не подается, поскольку разомкнут контакт 4 .

Основы электроснабжения

Электроснабжением называют генерирование, передачу и распределение электрической энергии между потребителями.

Генерирование электрической энергии создается электрическими станциями. Почти все промышленные электрические станции имеют конечным элементом синхронный генератор трехфазного синусоидального напряжения. С увеличением единичной мощности генератора повышается его КПД, поэтому современные станции имеют генераторы очень большой мощности.

Электрические станции можно классифицировать таким образом:

тепловые, гидравлические, атомные, ветровые электростанции, гелиоэлектростанции, геотермальные, приливные и т.д. более других распространены тепловые электростанции , которые сжигают уголь, торф, газ, нефть и др. на этих станциях вырабатывается электрическая энергия с КПД около 40 %. Тепловые станции загрязняют воздух вследствие неполного сжигания горючего и недостаточной фильтрации отработанных газов.

Гидравлические станции используют энергию водного потока. На таких станциях вырабатывается значительно более дешевая электрическая энергия. Гидроэлектростанция большой мощности имеет КПД, приближающийся к 90 %. Гидравлические станции нарушают водный баланс рек и также ухудшают экологию.

Атомные электростанции превращают энергию деления атомного ядра в электрическую энергию. КПД реактора атомной станции 25…35 %. В случае аварии на атомной станции возникает угроза радиационного загрязнения среды.

Эксплуатация любого источника электрической энергии может вызвать экологические нарушения. Поэтому в развитых странах уделяется большое внимание технологии выработки электрической энергии. Применяя современную технологию, некоторые страны безопасно вырабатывают свыше 60 % электроэнергии на атомных станциях.

Начинается применение ветровых и гелиоэлектрических станций. Небольшой мощности электроэнергию выдают геотермальная (на Камчатке) и приливная (на Кольском полуострове) станции.

Синхронные генераторы электрических станций индуцируют трехфазную синусоидальную ЭДС величиной 18 кВ. Для уменьшения потерь в линиях электропередач на повышающих подстанциях напряжение трансформируется до 110 и 330 кВ и подается в Единую Энергетическую Систему. Потери в линиях передач пропорциональны квадрату тока, поэтому электроэнергия транспортируется при повышенном напряжении и уменьшенном токе.

Линии электропередач бывают воздушные и кабельные. Воздушные линии электропередач (ЛЭП) значительно дешевле кабельных (подземных) и поэтому шире применяются. Линии электропередач соединяются с трансформаторами специальными высоковольтными коммутирующими устройствами.

Обычно промышленными предприятиями электрическая энергия потребляется с напряжением 380 В. Поэтому перед потребителем устанавливаются распределительные пункты и трансформаторные подстанции, понижающие напряжение до 6…10 кВ и 380…220 В.

Различают три основные схемы электроснабжения потребителей: радиальную, магистральную, смешанную.

Радиальная схема электроснабжения предусматривает применение трансформаторной подстанции для каждого потребителя. Это очень надежная схема электроснабжения, но требует большого количества подстанций.

Магистральная схема предусматривает лишь несколько подстанций, которые включаются в линию электропередачи. К каждой подстанции подключается много потребителей.

Смешанная схема предусматривает участки с радиальным и магистральным включением. Потребители подключаются дифференцированно. Такая схема применяется чаще.

Схема электроснабжения автономной энергетической единицы может быть довольно оригинальной. Особенности электроснабжения зависят от функциональных задач исполнительных механизмов, условий эксплуатации, особых требований, касающихся массы, габаритов, КПД электрических устройств и т.п.

Электроснабжение промышленных предприятий . Около двух третей всей электроэнергии потребляется промышленностью. Схема электроснабжения промышленных предприятий строится по ступенчатому принципу, число ступеней зависит от мощности предприятия и схемы размещения отдельных потребителей электроэнергии. На первой ступени напряжение энергосистемы подводится к главной подстанции, где оно от 110-220 кВ снижается до 10 -6 кВ. Сети второй ступени подводят это напряжение к цеховым трансформаторным подстанциям, где оно понижается до напряжения потребителей. Третью ступень составляют сети, распределяющие напряжение цеховой подстанции между отдельными потребителями.

На крупных предприятиях с большим потреблением электроэнергии питание потребителей может осуществляться при напряжении 660 В. Большинство предприятий используют трехфазные сети 380/ 220 В. В помещениях с повышенной опасностью допустимое напряжение питания потребителей не должно превышать 36 В. В особо опасных условиях (котлы, металлические резервуары) – 12 В.

По требуемой надежности питания потребители электрической энергии делят на три категории. К первой категории относятся такие потребители, перерыв в снабжении электроэнергией которых связан с опасностью для людей или влечет за собой большой материальный ущерб (доменные цехи, котельные производственного пара, подъемные и вентиляционные установки шахт, аварийное освещение и др.) они должны работать непрерывно. Для потребителей второй категории (самых много численных) допускаются перерывы в питании на ограниченное время. К потребителям третьей категории относятся вспомогательные цехи и другие объекты, для которых допускается перерыв в электроснабжении до одних суток.

Для повышения надежности энергоснабжения предусматривается питание потребителей от двух независимых сетей и автоматически включаемого резервного источника электроэнергии. Различают «горячий» и «холодный» резервные источники. «Горячий» резервный источник обеспечивает немедленное аварийное питание, его используют для безаварийной остановки потребителя.

Дальнейшее улучшение систем электроснабжения промышленных предприятий связано с повышением напряжения питания (с 220 до 380 В, с 6 до 10 кВ и т.д.) при максимально возможном приближении высокого напряжения к потребителям (глубокий ввод) и уменьшении числа ступеней трансформации.

Провода и кабели . Для прокладки воздушных линий используют различные виды голых проводов. Стальные однопроволочные провода изготовляют диаметром не более 5 мм. Наибольшее распространение находят многопроволочные провода, которые имеют высокую прочность и гибкость. Их производят из одинаковых проволок, число которых может достигать 37. диаметр проволок и их число подбирают таким образом, чтобы обеспечить наибольшую плотность упаковки проволок в проводе. Обычно 6, 11, 18 проволок располагают вокруг одной центральной и слабо закручивают. Многопроволочные провода бывают стальными, алюминиевыми, стальалюминиевые и из биметаллических проволок. В стальалюминиевых проводах часть проволок – стальная, часть – алюминиевая. Этим обеспечивается механическая прочность при повышенной электропроводности. Биметалличнские проволоки изготовляют электролитическим способом: стальную жилу покрывают слоем меди или алюминия.

Для электропроводки внутри помещений, как правило, используют изолированные провода из меди или алюминия. Изолированные однопроволочные провода имеют большую жесткость и площадь поперечного сечения не выше 10 мм 2 .

Многопроволочные провода производят из луженых медных или алюминиевых жил. Они удобны при монтаже и эксплуатации.

Для прокладки скрытых безопорных линий, а также для канализации электроэнергии, подводимой к подвижным объектам, служат электрические кабели. В кабеле провода двух или трехфазной линии заключены в прочную герметичную многослойную оболочку, что повышает надежность линий электропередачи. Кабели можно прокладывать под землей и под водой. Подземные кабели – основное средство канализации электроэнергии в крупных городах. Недостаток кабельных линий – их высокая стоимость.

Основы электробезопасности