Альтернативная электроэнергия для частного дома. Альтернативные источники энергии для электроснабжения дачи или дома

В условиях, когда цены на энергоносители постоянно повышаются, собственники частных домов чаще задумываются об альтернативных источниках энергии. Некоторые домовладельцы вовсе не имеют возможности подключения к магистрали из-за высокой стоимости монтажных работ. Инженеры, а вместе с ними и народные умельцы, обратили внимание на то, что даёт человечеству сама природа и создали ряд устройств, которые можно сделать своими руками для возобновления энергоресурсов. Видео продемонстрирует лучшие наработки в действии.

Генератор из биоотходов

Биогаз – это экологически чистый вид топлива. Используют его аналогично природному газу. Технология производства основана на жизнедеятельности анаэробных бактерий. Отходы помещают в ёмкость, в процессе разложения биологических материалов выделяются газы: метан и сероводород с примесью углекислоты.

Данную технологию активно используют в Китае и на животноводческих фермах Америки. Чтобы в домашних условиях получать биогаз непрерывно, нужно иметь фермерское хозяйство или доступ к бесплатному источнику навоза.

Генератор из биоотходов

Для сооружения такой установки понадобится герметичная ёмкость с вмонтированным шнеком для перемешивания, патрубок для отвода газа, горловина для загрузки отходов и штуцер для выгрузки отработанных отходов. Конструкция должна быть идеально герметичной. Если газ не будет отбираться постоянно, то понадобится установить предохранительный клапан для сброса избыточного давления, чтобы у ёмкости не сорвало «крышу». Порядок действий следующий.

  1. Выбираем место для обустройства ёмкости. Размер подберите исходя из количества имеющихся отходов. Для эффективной работы целесообразно её заполнение на две трети. Резервуар может быть металлическим или из армированного бетона. Большое количество биогаза не удастся получить из маленькой ёмкости. Из тонны отходов выйдет 100 кубов газа.
  2. Чтобы ускорить процесс работы бактерий, потребуется подогрев содержимого. Его можно осуществить несколькими путями: под ёмкость поместить змеевик, подключенный к системе отопления или установить ТЭНы.
  3. Анаэробные микроорганизмы находятся в самом сырье, при определённой температуре они становятся активными. Автоматическое устройство в водонагревательных котлах включит обогрев при поступлении новой партии и отключит, когда отходы прогреются до заданной температуры.
    Полученный газ можно преобразовать в электричество через газовый электрогенератор.

Совет. Отработанные отходы используются в качестве компостного удобрения для садовых грядок.

Энергия из ветра

Наши предки давно научились применять энергию ветра для своих нужд. В принципе, с тех пор конструкция почти не изменилась. Только жернова сменил привод генератора, преобразующий энергию вращающихся лопастей в электричество.

Для изготовления генератора понадобятся следующие детали:

  • генератор. Некоторые используют мотор от стиральной машинки, слегка преобразовав ротор;
  • мультипликатор;
  • аккумулятор и контроллер его заряда;
  • преобразователь напряжения.

Ветрогенератор

Существует множество схем самодельных ветрогенераторов. Все они комплектуются по одному принципу.

  1. Собирается рама.
  2. Устанавливается поворотный узел. За ним монтируются лопасти и генератор.
  3. Монтируют боковую лопату с пружинной стяжкой.
  4. Генератор с пропеллером крепится на станину, затем её устанавливают на раму.
  5. Подсоединяют и соединяют с поворотным узлом.
  6. Устанавливают токосъёмник. Соединяют его с генератором. Провода подводят к батарее.

Совет. От диаметра пропеллера будет зависеть число лопастей, а также количество генерируемого электричества.

Тепловой насос

Чтобы получить энергию из земных глубин, потребуется соорудить достаточно сложное устройство, которое позволит получать альтернативную энергию из грунтовых вод, самого грунта или из воздуха. Чаще всего такие устройства применяют для обогрева помещений. По сути, агрегат представляет собой большую холодильную камеру, которая при охлаждении окружающей среды преобразует энергию и отдаёт в виде тепла с высоким потенциалом. Составляющие системы:

  1. Наружный и внутренний контур с фреоном.
  2. Испаритель.
  3. Компрессор.
  4. Конденсатор.

Схема работы теплового насоса

Коллектор можно установить вертикально, если площадь участка не позволяет установить горизонтальный. Бурят несколько глубоких скважин и опускают в них контур. Горизонтально его располагают в грунт на глубину полтора метра. Если дом расположен на берегу водоёма, теплообменник прокладывают в воде.
Компрессор можно взять от кондиционера. Конденсатор изготавливается из 120 л бака. В ёмкость вставляется медный змеевик, по нему будет циркулировать фреон, и вода из отопительной системы начнёт прогреваться.

Испаритель изготавливается из пластиковой бочки объёмом более 130 литров. В этот бак вставляется ещё один змеевик, его совмещение с предыдущим будет осуществляться через компрессор. Патрубок испарителя делают из обрезка канализационной трубы. Посредством патрубка регулируется поступление воды из водохранилища.

Испаритель опускается в водоём. Вода, обтекая его, побуждает испарение фреона. Газ поднимается в конденсатор и отдаёт тепло воде, которая окружает змеевик. Теплоноситель циркулирует в системе отопления, обогревая помещение.

Совет. Температура воды водоёма не имеет значения, важно лишь её постоянное наличие.

Энергия солнца - в электричество

Солнечные панели впервые начали делать для космических кораблей. В основе устройства лежит способность фотонов создавать электрический ток. Вариаций конструкции солнечных батарей великое множество и каждый год они совершенствуются. Самостоятельно изготовить солнечную батарею можно двумя способами:

Способ №1. Купить готовые фотоэлементы, собрать из них цепь и накрыть конструкцию прозрачным материалом. Работать нужно предельно осторожно, все элементы очень хрупкие. Каждый фотоэлемент имеет маркировку в вольт-амперах. Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности. Последовательность работы такая:

  • для изготовления корпуса понадобится лист фанеры. По периметру прибиваются деревянные рейки;
  • в листе фанеры сверлятся отверстия для вентиляции;
  • внутрь помещается лист ДВП со спаянной цепью фотоэлементов;
  • проверяется работоспособность;
  • на рейки прикручивается оргстекло.

Солнечные батареи

Способ №2 требует знаний электротехники. Электрическая цепь собирается из диодов Д223Б. Спаивают их по рядам последовательно. Помещают в корпус, накрытый прозрачным материалом.

Фотоэлементы бывают двух видов:

  1. Монокристаллические пластины обладают КПД 13% и прослужат четверть века. Безупречно работают только в солнечную погоду.
  2. Поликристаллические имеют КПД ниже, их срок службы всего 10 лет, но мощность не падает при облачности. Панель площадью 10 кв. м. способна произвести 1КВт энергии. При размещении на крыше стоит учитывать общий вес конструкции.

Готовые батареи размещают на самой солнечной стороне. Панель необходимо оснастить возможностью регулировки наклона угла по отношению к Солнцу. Вертикальное положение устанавливают во время снегопадов, чтобы батарея не вышла из строя.

Солнечную панель можно использовать с аккумулятором или без него. Днём потреблять энергию солнечной батареи, а ночью - аккумулятора. Либо днём пользоваться солнечной энергией, а ночью - от центральной сети электроснабжения.

При наличии на участке ручья или водоёма с плотиной дополнительным источником альтернативной электроэнергии станет самодельная гидроэлектростанция. В основе устройства лежит водяное колесо, а мощность будет зависеть от скорости течения воды. Материалы для изготовления генератора и колеса можно взять от автомобиля, а обрезки уголка и металла найдутся в любом хозяйстве. Кроме этого, понадобится кусок медного провода, фанера, смола полистироловая и неодимовые магниты.

Самодельная гидроэлектростанция

Последовательность работ:

  1. Делается колесо из 11 дюймовых дисков. Из стальной трубы изготавливаются лопасти (режем трубу вдоль на 4 части). Потребуется 16 лопастей. Диски стягиваются болтами, зазор между ними 10 дюймов. Лопасти привариваются сваркой.
  2. Изготавливается сопло по ширине колеса. Его делают из обрезка металла, выгнув по размеру и соединив сваркой. Сопло настраивают по высоте. Это позволит отрегулировать водяной поток.
  3. Сваривается ось.
  4. Устанавливается колесо на ось.
  5. Делается обмотка, заливаются смолой катушки – статор готов. Собираем генератор. Из фанеры изготавливается шаблон. Устанавливают магниты.
  6. Генератор защищают металлическим крылом от водяных брызг.
  7. Колесо, ось и крепежи с соплом покрывают краской для защиты металла от коррозии и эстетического удовольствия.
  8. Регулировкой сопла добиваются наибольшей мощности.

Самодельные устройства не требуют больших капиталовложений и производят энергию бесплатно. Если совместить несколько видов альтернативных источников, то такой шаг ощутимо снизит расходы на электроэнергию. Для сбора агрегата понадобятся только умелые руки и ясная голова.

Альтернативные источники энергии: видео

Источники энергии для дома: фото


Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница – предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор . Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 – сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 – соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 – сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 – подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 – изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 – обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные . Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы . Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими . Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги . При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти , вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор , который вырабатывает переменный ток;
  • Контроллер управления лопастями , отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи , нужны для накопления и выравнивания электрической энергии;
  • Инвертор , выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта , необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 – изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 – изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 – переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.

Электроэнергия - это один из важнейших источников питания для частного дома. Электричество помогает в приготовлении пищи, отоплении помещения, закачке в него воды и в простом освещении. Оно в состоянии полностью заменить газоснабжение и центральный водопровод. Без электричества современный дом не считается благоустроенным и функциональным. Высоковольтные линии дотягиваются даже до самых отдаленных сел и поселков, снабжая их электричеством. Но все же остаются места, куда коммуникации не проложены, а монтаж их обойдется в приличную сумму. В данной ситуации выручат альтернативные источники энергии. Они экологически безопасны, полностью автономны и финансово выгодны. Владелец собственного источника электрической энергии не зависит от плановых ремонтных работ, поломок и веерных отключений, которые оставляют без света целые поселки. Самые распространенные и не совсем привычные нетрадиционные источники энергии подробно рассмотрены ниже.

Электрогенераторы

Первый и самый популярный источник энергии дома, который чаще всего встречается в частных домах - электрогенераторы. По типу используемого горючего они разделяются на дизельные, бензиновые и газовые.

Дизельные генераторы имеют массу преимуществ, среди них экономичность, надежность и низкий риск возникновения пожара. При регулярном ежедневном использовании дизельный генератор гораздо выгодней моделей с потреблением газа или бензина. Расход топлива у дизельного оборудования не велик, цена на топливо также не высока, он не требует дорогостоящих ремонтов и денежных вложений. Недостатки дизельных генераторов - большое количество выделяемых при работе газов, шум и высокая цена на сам аппарат. Цена оборудования с мощностью 5 кВт в среднем составляет 850 $.

Бензиновый генератор - данный аппарат идеально подходит как резервный или сезонный источник тока. Генераторы на таком типе топлива имеют небольшие размеры, издают мало шума при работе, сам аппарат имеет более низкую цену, чем дизельный аналог. Средняя цена бензинового генератора мощностью 5 кВт составляет 500 $. Недостатки использования бензинового электрогенератора - уровень шума хоть и низок, но он есть, во время работы выделяется большое количество углекислого газа, потому прибор необходимо размещать в отдельных комнатах с хорошей звукоизоляцией.

Газовые генераторы электричества зарекомендовали себя хорошо со всех сторон. Работают они как от природного газа, так и от сжиженного топлива в баллонах. Уровень шума у данных приборов самый низкий, моторесурс очень высок. Средняя цена на прибор мощностью 5 кВт составляет 600 $.

Использование солнечной энергии

Еще один альтернативный источник электрической энергии - энергия солнца. Используют ее не только для выработки электрической энергии, но и для обеспечения автономного отопления. Для получения электроэнергии от солнца устанавливаются солнечные батареи различной площади, которые оборудуются аккумулятором и инвертором. Среди преимуществ использования источников электричества на солнечной энергии значится:

  • Способность возобновляться.
  • Абсолютная бесшумность в работе.
  • Безопасность для здоровья человека и для окружающей среды, так как используемые в данной технологии приборы не выбрасывают в атмосферу никаких веществ.
  • Простота монтажа при самостоятельной установке.

Все эти качества и делают источники энергии солнца одними из самых популярных. Но есть у данного способа получения электричества и недостатки:

  • Для домов с высоким показателем потребления электричества потребуется установка оборудования большой площади, которое займет много места на придомовой территории. Площадь станции должна быть не менее 10 м2. То есть данный тип получения энергии недоступен для владельцев небольших участков земли.
  • Второй недостаток - зависимость от суточных и сезонных изменений в солнечном излучении.
  • Третий - при работе данные установки не выделяют вредные вещества, но вот для изготовления фотоэлементов и гелиосистем, из которых состоит солнечная батарея, используются высокотоксичные вещества, которые сложно утилизировать.

Готовая станция имеет цену от 3500 до 7000 $. Более доступный способ получения энергии от солнца - коллекторы для нагрева воды. Данное оборудование улавливает солнечное тепло даже в те дни, когда звезда скрыта за тучами. Используется только для нагрева воды, электроэнергию не вырабатывает. Один коллектор удовлетворяет суточную потребность в горячей воде для семьи из трех человек. Цена варьирует от 1000 до 4000 $. Недостаток у данного вида оборудования только один, присущий и солнечным батареям - невозможность функционирования в зонах с низкой солнечной активностью и в ночное время суток.

Использование энергии ветра

Установки для преобразования энергии воздушного потока в электричество также уже не относятся в разряд фантастики и применяются повсеместно. Работают они по принципу ветряных установок, которые преобразовывают кинетическую энергию ветра в механическую энергию от вращения турбины. Данная энергия собирается и преобразуется инвертором в переменный ток. Минимальная скорость ветра, при которой образуется электричество от маховика - 2 м/с. Оптимальная скорость ветра - 8 м/с. По типу конструкции ветряные генераторы энергии делятся на модели с горизонтальным расположением ротора и с вертикальным.

Горизонтальная конструкция генератора имеет высокий показатель КПД, при монтаже используется небольшое количество материалов. Недостатки - для монтажа потребуется высокая мачта, сам генератор имеет сложную механическую часть, в обслуживании не удобен. Вертикальные отличает больший диапазон скоростей ветра, при котором они функционируют. Но при этом вертикальные ветряные генераторы не экономичны, так как требуют использования большего количества оборудования и материалов.

Использование ветряной станции ограничено показателями ветра в разрезе каждого сезона. Если в межсезонье, при повышенной активности воздуха, станция будет весьма эффективна, то в дни безветрия электричество вырабатываться не будет. Чтобы сгладить эту разницу и питать дом электрическим током бесперебойно, ветряную станцию оборудуют накопительным аккумулятором. Данная мера помогает накапливать энергию в ветреную погоду и использовать ее в периоды затишья.

Альтернативой установки аккумуляторной батареи к ветряной станции выступает преобразование энергии в тепло. Используют ее как для отопления, так и для горячего водоснабжения. В такой конструкции батарею заменяют водонакопительным баком. Использование ветряной станции в таком ключе позволяет снизить ее общую стоимость на 25%. Стоимость ветряной станции с аккумулятором составляет в среднем 10 000 $, без аккумулятора - 1000-2000 $.

Среди не очень приятных нюансов использования ветряной станции числится необходимость обустройство фундамента под оборудование. Его укрепляют особенно тщательно, чтобы во время сильных ветров мачту вместе с ветряком не вырвало из земли. Второй нюанс - возможность обледенения лопастей в зимний период, это снижает КПД станции. Во время работы данное оборудование образует шум и вибрации, потому монтируют его вдали от жилых строений.

Использование геотермальной энергии

Геотермальная энергия - это достаточно новый источник энергии для частного дома. В данном случае используется тепло, которое образуется в недрах планеты. Ядро Земного шара имеет высокую температуру, которая выходит на поверхность в вулканических областях, источниками воды и пара, а также содержится в глубоких слоях планеты. Геотермальное тепло используется как энергия источника тока и тепла.

Принцип работы геотермального источника энергии в частном доме достаточно прост - бурят скважину, в которую устанавливают тепловой насос. Установка качает из глубинных слоев горячую воду, при охлаждении она вырабатывают энергию, которая далее преобразуется в электричество. При работе данная установка расходует электрический ток, но при этом на каждый потраченный кВт она вырабатывает 5-6 кВт тока. Средняя стоимость установки для дома площадью 150 м2 составляет 30 000 $. Преимущества использования - неисчерпаемый источник энергии, который не зависит от сезона, времени суток и погодных условий.

Недостатки использования энергии Земли - термальная вода зачастую сильно минерализована и содержит токсические примеси, потому ее нельзя отправлять в обычные канализационные стоки. Отработанную воду возвращают в тот глубинный горизонт, из которого она была закачена. Некоторые ученые полагают, что данный вид получения энергии приводит к увеличению сейсмической активности в земной коре.

Использование энергии биомассы

О биотопливе уже наслышаны многие. Вокруг данного вида горячего разгорается масса споров и противоречивых отзывов. В качестве топлива для машин оно имеет привлекательную цену, но при этом до конца не понятно его влияние на мотор и его мощность. Но боитопливо применяется не только в качестве горючего для транспортных средств, но и как источник электрического тока. Данным горючим заменяют газ, бензин и дизель при заправке оборудования для выработки электрической энергии.

Биотопливо производится путем переработки различных растений. Для изготовления биологического дизеля применяют жиры из семян масляных культур, а бензин производят путем ферментации кукурузы, сахарного тростника, свеклы и других растений. Наиболее оптимальным источником биологической энергии признаны водоросли, так как неприхотливы, легко превращаются в боимассу с похожими на нефть маслянистыми свойствами.

Данная технология также позволяет получать биологический газ, который улавливают при брожении органических отходов пищевой промышленности и животноводства. В данном случае получают метан. При улавливании газа на свалках получают целлюлозный этанол. 1 тонна бесполезного мусора производит до 500 м3 полезного газа.

Что касается бытового использования биотоплива для выработки электрической энергии, то для этой цели приобретается индивидуальная биогазовая установка. Такой прибор вырабатывает природный газ из отходов. Стандартная установка ИБГУ-1 в сутки дает от 3 до 12 м3 газа, которые затем используются для отопления дома, заправки различного оборудования, в том числе и газового генератора электроэнергии. Стоимость биогазовой установки в среднем составляет 9 000 $.

Миниатюрная ГЭС

Еще один вид альтернативной энергетики, который успешно применяется в частных домах - индивидуальные ГЭС. В монтаже этот тип генераторов электричества является одним из самых сложных, но при этом его КПД значительно выше, чем у ветряных и солнечных источников. ГЭС сооружаются плотинные и бесплотинные, второй вариант наиболее прост и доступен. Такие установки называют еще проточными станциями. По устройству они делятся на станции с колесом, гирляндой, ротором Дарье и пропеллером.

  • Станция с водяным колесом имеет центральную круглую часть с лопастями, которая установлена перпендикулярно водяной поверхности. При движении вода давит на лопасти и крутит колесо. Принцип работы такой же, как в ветряной станции, только же в качестве источника выступает вода. Более сложные конструкции колесных водяных электростанций - колесо-турбина, имеющее специальные лопатки для струи воды.

  • Станция с гирляндой - это трос, на котором жестко закреплены роторы. Трос крепится на противоположных берегах водяного потока, роторы погружены в воду. При движении вода вращает роторы, а они передают это движение тросу.
  • Станция с ротором Дарье - конструкция похожа на предыдущую, но здесь ротор расположен вертикально и вращается за счет разных показателей давления в его лопастях. Этот показатель создается за счет сложной формы поверхности.

  • Станция с пропеллером - подводная установка с вертикальным ротором. Внешне данная установка схожа с ветряком, имеющим маленькие лопасти.

Среди представленных разновидностей ГЭС наиболее неудобной считается гирляндная установка. Она имеет низкую производительность, сама конструкция представляет опасность для окружающих людей, монтаж станции требует расхода большого количества материалов. Ротор Дарье более удобен, так как ось расположена вертикально и ее установка возможна над водой. Но смонтировать такую станцию достаточно сложно и ротор при старте необходимо раскручивать. Наиболее оптимальный вариант для изготовления своими руками - станция с пропеллером или колесом. Средняя стоимость станции мощностью 6 кВт составляет 8 000-10 000 $.

Тарифы на энергоносители постоянно повышаются, заставляя обращаться к природным источникам энергии. Альтернативные источники энергии практически неиссякаемы, используются человечеством на 0,001%.

Человечество использует для выработки энергии не возобновляемые источники энергии – уголь, газ, нефть. Запасов которых может не хватить уже для живущего поколения, поэтому энергоносители постоянно дорожают. Современная семья тратит до 40% бюджета на свет, отопление, топливо для авто. По прогнозам экономистов в ближайшие 15 лет затратная часть на энергоносители станет основной – до 70%.

Практически любые природные факторы можно превратить в энергию: солнце, ветер, движения воды, тепло недр, разложение биомассы. В России для частного дома наиболее актуальны энергия солнца, ветра и тепло недр. Энергия воды – приливная, напорная, геотермальные источники сложны в реализации технически, возможны проблемы с использованием недр за границами участка.

Вопрос использования природных ресурсов не проработан на законодательном уровне. Согласно действующего законодательства все природные ресурсы принадлежат государству. Поэтому даже использование энергии солнца может теоретически облагаться налогом.

Ветер

Энергию ветра люди используют давно, эффективно научились использовать 40 лет назад со строительством ветряных электростанций. Ветрогенератор представляет собой систему лопастей, соединенных с генератором через редуктор или напрямую. Приемлемых показателей ветрогенераторы достигают при высоте мачты более 15 метров, что в условиях частного дома обустроить проблематично. Низкие мачты «работают» 15% дней в году, высокие – до 30%.

Современные разработки формы лопастей приспособили ветрогенераторы под все условия эксплуатации и движения воздуха: тихоходные, быстроходные, роторные.

Тихоходные предназначены для скоростей ветра 2-6 м/с, представляют собой ветровое колесо с большим количеством лопастей 15 – 30 шт. Они низкошумны, хорошо запускаются в малый ветер, но обладают малым КПД и большой парусностью.

Быстроходные рассчитаны под ветер 5 -15м/с, имеют 3 – 4 лопасти. Отличаются высоким КПД и шумом, самые распространенные в мире.

Роторные представляют собой бочку с вертикальными лопастями. Не требуют ориентирования по ветру, самый низкий уровень шумов, но все перечеркивает самый низкий КПД.

Использование ветрогенераторов в частном домостроении имеет смысл как один из источников энергии.

Солнце

Солнечная энергия является самым перспективным источником неиссякаемой энергии. За год на поверхность земли попадает солнечного излучения в 30 000 раз больше, чем годовое потребление электроэнергии всем населением планеты. Ведутся постоянные работы по улучшению КПД фотоэлектрических преобразователей и гелиоустановок. Это позволяет использовать их для промышленной выработки электрической энергии.

Возможно самостоятельное изготовление фотоэлектрических панелей и гелиоустановок нагрева воды. Однако параметры таких установок составляют в лучшем случае 40% от промышленных моделей. Особенно требовательны к качеству изготовления гелиоустановки нагрева воды. Промышленные с вакуумными трубками позволяют греть воду для отопления и бытовых нужд даже в морозы, было бы солнце.

Гелиоустановки можно разделить на прямой и косвенный нагрев. Прямой – это теплицы, парники, баки нагрева воды на солнце. Застекленная лоджия или веранда тоже является источником тепла, только используется оно нерационально. Косвенный нагрев позволяет разместить установку выработки тепла на солнце в удобном месте – крыша, любое открытое место. Чаще всего в качестве теплоносителя используются незамерзающие жидкости, передача тепла происходит в теплообменниках – накопителях, откуда ведется водоразбор на бытовые нужды и отопление.

Современные гелиоустановки производятся двух типов — трубчатые и плоские. Плоские представляют собой ящик со спиралевидным зачерненным нагревательным элементом, чаще медной трубкой. Спираль термоизолированна с трех сторон, со стороны солнца накрыта стеклом. Такая установка дешева, доступна для самостоятельного изготовления, но имеет низкий КПД. В качестве теплоносителя используется вода либо незамерзающий теплоноситель.

Трубчатые представляют собой блок параллельных трубок от 1,3 до 4м высотой. Количество набирается любое благодаря легкости сопряжения трубок со сборным коллектором методом сухого соединения, при котором набор трубок и их замена происходит во время эксплуатации. Трубка представляет собой стеклянную вакуумную колбу с внутренней черной трубкой светопоглощения, наполненная специальным теплоносителем с низкой температурой кипения, повышающий КПД установки. Трубчатые гелиоустановки на 30% экономичнее плоских, но дороже при покупке. Для эффективной работы комплектуются насосом, системой термоизолированных трубопроводов, теплообменником. Монтируется такая панель стационарно ввиду большого веса – до 300кг с наклоном к горизонту, для широты Москвы – 30 градусов.

Для средней полосы России наибольшее практическое применение в индивидуальном строительстве находят трубчатые гелиоустановки нагрева воды, эффективно работающие при любой температуре воздуха. Способны обеспечить не только потребность в горячей воде, но и участвовать в отоплении.

Тепло земли

Все слышали о тепловых насосах, позволяющих брать дармовое тепло земли и отапливаться бесплатно. Принцип их действия основан на сборе любого низкотемпературного потенциала и превращения его в тепло. Подходит все, от чего можно взять положительную температуру: грунт, вода – скважина или водоем, воздух. Физические процессы те же, что в компрессоре холодильника, только наоборот, вырабатывается не холод, а тепло. В замкнутом контуре циркулирует жидкость с низкой температурой кипения, отбирая тепло у окружающей среды закипает, конденсируясь – отдает тепло дому.

Но нужно критически подходить к оценке возможности новомодных систем отопления. Температура на выходе теплового насоса — 40-60С, чаще 40С, что хорошо подходит для теплых полов, но не для радиаторного отопления. Стоимость надежных европейских тепловых насосов начинается с 8000$, что для среднестатистического россиянина неразумно — не окупится никогда. К тому же необходимо переделать или дополнить существующую систему отопления под теплый пол, состыковать ее с системой теплового насоса. Даже при наличии готовой скважины – самого эффективного теплообменника, система теплового насоса обойдется минимум в 12 000$.

Экономическая целесообразность возможна при изготовлении теплового насоса своими руками, который можно сделать из компрессора холодильника от 1,5 кВт. Технология переделки достаточно хорошо представлена в интернете.

Хорошо все, что хорошо

Для возможности экономит на энергоресурсах нужно применять все средства, описанные выше. Сами по себе фотоэлементы и ветрогенератор стоят не дорого, тем более их можно изготовить самостоятельно. Эффективное их применение возможно только с аккумуляторными батареями (АБ) и преобразователями напряжения. А это уже нужно прибавить 50% стоимости агрегатов. Именно параллельная работа на АБ фото и ветро генераторов позволяет добиться заметных результатов. Работа всех нагревательных элементов целесообразна на аккумулятор тепла, позволяя «запасать» тепло впрок на обогрев и горячую воду. Но самое главное, с чего начать экономию — это утепление дома. Без утепления добиться сколь нибудь заметных результатов невозможно.

Альтернативные источники энергии

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.