Коэффициент теплотехнической неоднородности наружных стен. Теплотехнический расчет онлайн. Описание конструкции стенового ограждения

Пример расчета

Определить приведенное сопротивление теплопередаче R 0 r одномодульной трехслойной железобетонной панели на гибких связях с оконным проемом жилого крупнопанельного дома серии III-133.

Таблица И.3 - Определение коэффициента влияния f i

Вид теплопроводного включения Коэффициент влияния f i
Стыки Без примыкания внутренних ограждений С примыканием внутренних ограждений
Без ребер С ребрами толщиной, мм:
R cm /R k con:
1 и более - - 0,07 0,12
0,9 - 0,1 0,14 0,17
0,8 0,01 0,13 0,17 0,19
0,7 0,02 0,2 0,24 0,26
0,6 0,03 0,27 0,31 0,34
0,5 0,04 0,33 0,38 0,41
0,4 0,05 0,39 0,45 0,48
0,3 0,06 0,45 0,52 0,55
Оконные откосы Без ребер С ребрами толщиной, мм:
d" F /d" w:
0,2 0,45 0,58 0.67
0,3 0,41 0,54 0,62
0,4 0,35 0,47 0,55
0,5 0,29 0,41 0,48
0,6 0,23 0,34 0,41
0,7 0,17 0,28 0,35
0,8 0,11 0,21 0,28
Утолщение внутреннего железобетонного слоя
R y /R k con:
0,9 0,02 - -
0,8 0,12 - -
0,7 0,28 - -
0,6 0,51 - -
0,5 0,78 - -
Гибкие связи диаметром, мм:
0,05 - -
0,1 - -
0,16 - -
0,21 - -
0,25 - -
0,33 - -
0,43 - -
0,54 - -
0,67 - -
Примечания 1. В таблице приведены R k con , R cm , R y - термические сопротивления, м 2 ×°С/Вт, соответственно панели вне теплопроводного включения, стыка, утолщения внутреннего железобетонного слоя, определяемые по формуле (5); d" F и d" w - расстояния, м, от продольной оси оконной коробки до ее края и до внутренней поверхности панели. 2. Промежуточные значения следует определять интерполяцией.

А. Исходные данные

Панель толщиной 300 мм содержит наружный и внутренний железобетонные слои, которые соединены между собой двумя подвесками (в простенках), подкосом, расположенным в нижней зоне подоконного участка, и распорками: 10 - у горизонтальных стыков и 2 - в зоне оконного откоса (рисунок И.1).

В таблице И.4 приведены расчетные параметры панели.

Таблица И.4

В зоне подвесок и петель внутренний бетонный слой имеет утолщения, заменяющие часть слоя утеплителя.

Б. Порядок расчета

Конструкция ограждения содержит следующие теплопроводные включения; горизонтальные и вертикальные стыки, оконные откосы, утолщения внутреннего железобетонного слоя и гибкие связи (подвески, подкос, распорки).

Для определения коэффициента влияния отдельных теплопроводных включений предварительно рассчитаем по формуле (4) термические сопротивления отдельных участков панели:

в зоне утолщения внутреннего железобетонного слоя

R y =0,175/2,04+0,06/0,042+0,065/2,04=1,546 м 2 ×°С/Вт;

по горизонтальному стыку

R jn g =0,1/2,04+0,135/0,047+0,065/2,04=2,95 м 2 ×°С/Вт;

1 - распорки; 2 - петля; 3 - подвески; 4 - бетонные утолщения (d=75 мм внутреннего железобетонного слоя); 5 - подкос

Рисунок И.1 - Конструкция трехслойной панели на гибких связях

по вертикальному стыку

R jn v =0,175/2,04+0,06/0,047+0,065/2,04=1,394 м 2 ×°С/Вт;

термическое сопротивление панели вдали от теплопроводных включений

R k con =0,1/2,04+0,135/0,042+0,065/2,04=3,295 м 2 ×°С/Вт.

Условное сопротивление теплопередаче вдали от теплопроводных включений

R 0 con =1/8,7+3,295+1/23=3,453 м 2 ×°С/Вт.

Так как панель имеет вертикальную ось симметрии, то определение последующих величин осуществляем для половины панели.

Определим площадь половины панели без учета проема окна

A 0 =0,5(2,8×2,7-1,48×1,51)=2,66 м 2 .

Толщина панели d w =0,3 м.

Определим площадь зон влияния A i и коэффициент f i для каждого теплопроводного включения панели:

для горизонтального стыка

R jn g /R k con =2,95/3,295=0,895.

По таблице И.3 f i =0,1. Площадь зоны влияния по формуле (12)

А i =0,3×2×1,25=0,75м 2 ;

для вертикального стыка

R jn v /R k con =1,394/3,295=0,423.

По таблице И.3 f i =0,375. Площадь зоны влияния по формуле (12)

A i =0,3×2,8=0,84 м 2 ;

для оконных откосов при d" F =0,065 м и d" w =0,18 м, по таблице И.3 f i = 0,374. Площадь зоны влияния половины оконного проема с учетом угловых участков определяется по формуле (13)

A i =0,5=1,069 м 2 ;

для бетонных утолщений внутреннего железобетонного слоя в зоне подвески и петли при R" y /R k con =1,546/3,295= 0,469, по таблице И.3 f i =0,78. Суммарную площадь зоны влияния утолщений подвески и петли находим по формуле (14)

A i =(0,6+2×0,3)(0,47+0,1)+(0,2+0,3+0,1)(0,42+0,3+0,075)=1,161 м 2 ;

для подвески (диаметр стержня 8 мм) по таблице И.3 f i =0,16, площадь зоны влияния по формуле (14)

A i =(0,13+0,3+0,14)(0,4+2×0,3)=0,57 м 2 ;

для подкоса (диаметр стержня 8 мм) по таблице И.3 f i =0,16, по формуле (14)

A i =(0,13+0,3)(0,22+0,3+0,09)=0,227 м 2 ;

для распорок (диаметр стержня 4 мм) по таблице И.3 f i =0,05.

При определении суммарной площади зоны влияния пяти распорок следует учитывать, что ширина зоны влияния со стороны стыка ограничена краем панели и составляет 0,09 м. По формуле (14)

A i =5(0,3+0,3)×(0,3+0,09)=1,17 м 2 .

Рассчитаем r по формуле (11)

r=1/{1+(0,84×0,375+0,75×0,1+1,069×0,374+1,161×0,78+0,57×0,16+0,227×0,16+

1,17×0,05)}=0,71.

Приведенное сопротивление теплопередаче панели определим по формуле (8)

R 0 r =0,71×3,453=2,45 м 2 ×°С/Вт.

Уже упоминавшийся в п. 2.1.7 коэффициент теплотехнической однородности r является оценкой влияния различных случаев нарушения одномерности теплового потока сквозь наружное ограждение. Это могут быть регулярные внутренние связи, притягивающие слой утеплителя и фасадный слой к внутреннему конструктивному слою; кронштейны, удерживающие навесные фасадные системы, а также примыкающие друг к другу ограждающие конструкции. Для теплотехнических расчетов r очень удобная характеристика, так как сразу показывает долю, которую составляет сопротивление теплопередаче реальной конструкции по отношению к условному сопротивлению теплопередаче конструкции без теплопроводных включений и примыканий.

Значения коэффициента теплотехнической однородности получают из подробного прямого расчета сложной трехмерной конструкции одним из численных методов, например, методом конечных разностей. Поэтому понятно, что точность применения коэффициента теплотехнической однородности зависит от того, на сколько близко выполненный расчет отражает расчетный случай.

Диапазон значений коэффициента теплотехнической однородности лежит в очень широких пределах: 1 - 0,5 и даже ниже. Разумеется архитекторы и конструкторы стремятся к проектированию ограждающих конструкций с высоким r, однако в ряде случаев это практически невозможно. Столь значительный диапазон r свидетельствует о том, что при расчете теплопотерь инженер-теплотехник должен очень ответственно подходить к оценке сопротивлений теплопередаче ограждений, так как завышение значения коэффициента теплотехнической однородности может привести к занижению фактических теплопотерь, а занижение - к лишним затратам на утепление здания.

1. Указания Мосгосэксперизы.Скачать

Для стен с оконными проемами r = 0, 75 - 0,85 в зависимости от соотношения площади окон к площади фасада (для соотношения 0,18 величина r = 0,8);

Для глухих участков стен r = 0,92;

Для перекрытий верхнего этажа, совмещенных с покрытием кровли r = 0,95;

Для утепленного чердачного или цокольного перекрытия r = 0,97.

2. ГОСТ Р 54851-2011 КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ. Скачать

Таблица 1

Вид стен и использованные материалы

Коэффициент

Из однослойных легкобетонных панелей

Из трехслойных железобетонных панелей с эффективным утеплителем и гибкими связями

Из трехслойных железобетонных панелей с эффективным утеплителем и железобетонными шпонками или ребрами из керамзитобетона

Из трехслойных железобетонных панелей с эффективным утеплителем и железобетонными ребрами

Из трехслойных панелей на основе древесины, асбестоцемента и других листовых материалов с эффективным утеплителем при полистовой сборке при ширине панелей 6 и 12 м без каркаса

Из трехслойных металлических панелей с утеплителем из пенопласта без обрамлений в зоне стыка

Из трехслойных металлических панелей с утеплителем из пенопласта с обрамлением в зоне стыка

Из трехслойных металлических панелей с утеплителем из минеральной ваты с различным каркасом

Из трехслойных асбестоцементных панелей с минераловатным утеплителем с различным каркасом

Фасадные системы с эффективным утеплителем и тонким наружным штукатурным слоем

Навесные фасадные системы с эффективным утеплителем и облицовочным слоем на относе, образующим вентилируемую воздушную прослойку

3. СТО 00044807-001-2006 «ТЕПЛОЗАЩИТНЫЕ СВОЙСТВА ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ» Скачать

Таблица 8

Конструкции наружных ограждений

Коэффициент

1. Сплошная кладка из крупноформатных пустотелых пористых керамических камней

2. Сплошная кладка из пустотелого керамического, силикатного камня

3. Сплошная кладка из полнотелого и пустотелого керамического, силикатного обыкновенного и утолщенного кирпича

4. Сплошная кладка из полнотелого и пустотелого керамического, силикатного обыкновенного и утолщенного кирпича и камня, утепленная пенополиуретаном, напыляемым толщиной 30-35 мм

5. Облегченная кладка из полнотелого, пустотелого керамического силикатного кирпича или камня с внутренним слоем из плитного эффективного утеплителя с гибкими стальными связями или сетками

6. Облегченная кладка из полнотелого, пустотелого керамического кирпича или камня с внутренним слоем из плитного эффективного утеплителя с поперечными связями

7. Кладка из полистиролбетонных блоков с арматурой в растворных швах, отштукатуренная по металлической сетке с обеих сторон

8. Кладка полистиролбетонных блоков, облицованная с наружной стороны в полкирпича с поперечными металлическими сетками в растворных швах

9. Однослойные легкобетонные панели с монтажной арматурой

10. Легкобетонные панели с термовкладышами и монтажной арматурой

11. Трехслойные железобетонные панели с эффективным утеплителем и гибкими стальными связями

12. Трехслойные железобетонные панели с эффективным утеплителем и железобетонными шпонками или поперечными ребрами из керамзитобетона

13. Трехслойные железобетонные панели с эффективным утеплителем и поперечными железобетонными ребрами

14. Трехслойные металлические панели с эффективным утеплителем

15. Трехслойные асбоцементные панели с эффективным утеплителем

16. Железобетонные, кирпичные конструкции с плитным утеплителем, закрепленным дюбелями, оштукатуренные по капроновой или металлической сетке (термофасад)

17. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 20 кг/м) на подконструкции, прикрепленной к стене двумя (на 1 м стены) стальными кронштейнами (вентилируемый фасад здания)

18. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 20 кг/м) на подконструкции, прикрепленной к стене двумя (на 1 м стены) алюминиевыми кронштейнами с термической прокладкой (вентилируемый фасад здания)

19. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене тремя (на 1 м стены) стальными кронштейнами (вентилируемый фасад здания)

20. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене тремя (на 1 м стены) алюминиевыми кронштейнами (вентилируемый фасад здания)

21. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене металлическими кронштейнами (4 шт/м стены) (вентилируемый фасад здания)

От 0,55 до 0,30

22. Конструкции чердачных перекрытий и над подвалами:

а) из железобетонных панелей с плитным эффективным утеплителем

б) из железобетонных плит по металлическим балкам с плитным эффективным утеплителем

в) из деревянных элементов (балок, брусьев) с плитным эффективным утеплителем


4. СТО 17532043-001-2005 «НОРМЫ ТЕПЛОТЕХНИЧЕСКОГО ПРОЕКТИРОВАНИЯ ОГРАЖДАЮЩИХ
КОНСТРУКЦИЙ И ОЦЕНКИ ЭНЕРГОЭФФЕКТИВНОСТИ ЗДАНИЙ» Скачать

Таблица 6

Конструкции наружных стен

Коэффициент

Сплошная кладка из полнотелого или пустотелого керамического, силикатного кирпича или камня

Сплошная кладка из обыкновенных и крупноформатных пустотных пористых керамических камней с облицовкой из лицевого керамического кирпича, камня

Облегченная кладка из полнотелого, пустотелого керамического, силикатного кирпича или камня, слоем плитного или монолитного утеплителя

Однослойные легкобетонные панели

Легкобетонные панели с термовкладышами

Трехслойные железобетонные панели с эффективным утеплителем и гибкими связями

Трехслойные железобетонные панели с эффективным утеплителем и железобетонными шпонками

Трехслойные железобетонные панели с эффективным утеплителем и железобетонными ребрами

Трехслойные металлические панели с эффективным утеплителем

Трехслойные асбестоцементные панели с эффективным утеплителем

Вентилируемые фасады

Кладка из полистиролбетонных, ячеистобетонных блоков на клею с проволочной арматурой в горизонтальных швах, связывающей наружную облицовку из пустотелого кирпича со слоем внутренней штукатурки

Кладка из полистиролбетонных блоков на клею с проволочной арматурой в горизонтальных швах, связывающей наружный и внутренний слои штукатурки

Рисунок H.1 - Схемы теплопроводных включений в ограждающих конструкциях

H.1 РАСЧЕТ КОЭФФИЦИЕНТА ТЕПЛОТЕХНИЧЕСКОЙ ОДНОРОДНОСТИ ПО ФОРМУЛЕ (12)

НАСТОЯЩЕГО СВОДА ПРАВИЛ

Таблица H.1 - Определение коэффициента

Коэффициент при(рисунок H.1)

Примечание - Обозначения приняты по рисунку H.1.

Пример расчета

Определить приведенное сопротивление теплопередаче панели с эффективным утеплителем (пенополистирол) и стальными обшивками промышленного здания.

Исходные данные

Размер панели 6х2 м. Конструктивные и теплотехнические характеристики панели:

толщина стальных обшивок 0,001 м, коэффициент теплопроводности ;

толщина пенополистирольного утеплителя 0,2 м, коэффициент теплопроводности .

Отбортовка листового материала вдоль протяженных сторон панели приводит к образованию теплопроводного включения типа IIб (рисунок H.1), имеющего ширину =0,002 м.

Порядок расчета

Сопротивления теплопередаче вдали от включения и по теплопроводному включению:

Значение безразмерного параметра теплопроводного включения по таблице Н.2

0,002·58/(0,2·0,04)=14,5.

Таблица Н.2 - Определение коэффициента

#G0Схема теплопроводного включения по рисунку H.1

Значения коэффициента при(по рисунку H.1

По таблице Н.2 по интерполяции определяем величину

0,43+[(0,665-0,43)4,5]/10=0,536.

Коэффициент , по формуле (13)

Коэффициент теплотехнической однородности панели по формуле (12)

Приведенное сопротивление теплопередаче по формуле (11)

Н.2 РАСЧЕТ КОЭФФИЦИЕНТА ТЕПЛОТЕХНИЧЕСКОЙ ОДНОРОДНОСТИ ПО ФОРМУЛЕ (14)

НАСТОЯЩЕГО СВОДА ПРАВИЛ

Пример расчета

Определить приведенное сопротивление теплопередаче одномодульной трехслойной железобетонной панели на гибких связях с оконным проемом крупнопанельного жилого дома серии III-133.

Исходные данные

Панель толщиной 300 мм содержит наружный и внутренний железобетонные слои, которые соединены между собой двумя подвесками (в простенках), подкосом, расположенным в нижней зоне подоконного участка, и распорками: 10 - у горизонтальных стыков и 2 - в зоне оконного откоса (рисунок Н.2).

1 - распорки; 2 - петля; 3 - подвески;

4 - бетонные утолщения (=75 мм внутреннего железобетонного слоя); 5 - подкос

Рисунок Н.2 - Конструкция трехслойной панели на гибких связях

В #M12293 0 1200037434 4120950664 4294967273 80 2997211231 403162211 2325910542 403162211 2520таблице Н.4#S приведены расчетные параметры панели.

В зоне подвесок и петель внутренний бетонный слой имеет утолщения, заменяющие часть слоя утеплителя.

Порядок расчета

Конструкция ограждения содержит следующие теплопроводные включения: горизонтальные и вертикальные стыки, оконные откосы, утолщения внутреннего железобетонного слоя и гибкие связи (подвески, подкос, распорки).

Для определения коэффициента влияния отдельных теплопроводных включений предварительно рассчитаем по формуле (7) термические сопротивления отдельных участков панели:

в зоне утолщения внутреннего железобетонного слоя

по горизонтальному стыку

по вертикальному стыку

термическое сопротивление панели вдали от теплопроводных включений

Условное сопротивление теплопередаче вдали от теплопроводных включений

Так как панель имеет вертикальную ось симметрии, то определение последующих величин осуществляем для половины панели.

Определим площадь половины панели без учета проема окна

Толщина панели =0,3 м.

Определим площадь зон влияния и коэффициентдля каждого теплопроводного включения панели:

для горизонтального стыка

2,95/3,295=0,895.

По таблице Н.3 =0,1. Площадь зоны влияния по формуле (15)

для вертикального стыка

Таблица Н.3 - Определение коэффициента влияния

#G0Вид теплопроводного включения

Коэффициент влияния

Без примыкания внутренних ограждений

С примыканием внутренних ограждений

Без ребер

С ребрами толщиной, мм

Оконные откосы

Без ребер

С ребрами толщиной, мм:

Все без исключения стены и покрытия (и другие виды ограждающих конструкций зданий и сооружений) нельзя назвать изотермическими. Другими словами, говоря распределение температурного поля по сечению, перпендикулярного потоку тепла в конструкции не представляет собой постоянную величину, из-за присутствия всевозможных теплопроводных включений (так называемых "мостиков холода"), которые практически всегда в том или ином виде присутствуют в конструкции ограждения. В качестве теплопроводящих включений могут выступать арматурные стальные или композитные стержни в перевязке облицовочной кладки к несущим конструкциям, цементно-песчаный раствор или клей в кладке, фиксаторы теплоизоляционный материалов, углы и примыкания перекрытий и покрытий. Поэтому принимается такое понятие, как приведенное сопротивление теплопередаче ограждения R req , что есть величина равная осредненным теплотехническим характеристикам комбинированной (неоднородной по составу) конструкции, поток тепла в которой при постоянном по времени режиме не представляющийся одномерным по перпендикулярному сечению конструкции.

Таким образов R req равен сопротивлению теплопередаче однослойного ограждения такой же единицы площади, которая пропускает поток теплоты тот же что и в фактической конструкции при одном и том же градиенте температур между внутренней и наружной поверхностью ограждения. В том случае если отбросить влияние вышеуказанных теплопроводных включений или как мы уже говорили "мостиков холода" в конструкции ограждения, то его теплозащитные характеристики удобно представить с помощью понятия условного сопротивления теплопередаче. После того как мы определись с такими понятиями как условное и приведенное сопротивление, можно ввести определение коэффициента теплотехнической однородности r которое представляет собой отношение приведенного сопротивления теплопередаче к условному сопротивлению теплопередаче. Таким образом, r зависит от характеристик материалов и толщин составляющих ограждающей конструкцию слоев, а также от присутствия самих теплопроводных включений. Численное значение коэффициента r оценивает, насколько эффективно используются теплоизоляционные свойства утеплителя в ограждающей конструкции и влияние на это наличие теплоизоляционных включений. Исходя из решений по конструкции ограждения значение коэффициента теплотехнической однородности варьируется в пределах от 0,5 до 0,98 . Если оно равно 1, это значит, что фактически теплопроводных включений нет, и эффективность слоя теплоизоляционного материала максимальна использована.

Определение коэффициента теплотехнической однородности ограждающих конструкций.

Значение коэффициента r необходимо определять с помощью достаточно трудоёмких расчетов с использованием метода температурных полей или путем проведения замеров теплопроводности на основании эксперимента. В частности коэффициент теплотехнической однородности - r можно также рассчитать по указаниям, которые есть в СП 23-101-2004 «Проектирование тепловой защиты зданий». На практике же достаточно принять значение коэффициента по . Если при принятом по нормативным документам коэффициенте теплотехнической однородности конструкция ограждения все равно не соответствует действующим нормам то коэффициент можно повысить, подтвердив его применяемые значения расчетом.

В том случае когда в рассчитываемой конструкции ограждения не удается выдержать требования нормативных документов предъявляемых к коэффициенту теплотехнической однородности использование такой конструкции подлежит пересмотру. Тут возможны различные варианты, такие как замена самих применяемых типов и видов материалов в ограждении, уменьшение толщины швов в кладке, замена связующей стальной арматуры на композитную, изменение размеров кладочный блоков.

Учет коэффициента при расчете кладок.

Если же в конструкции ограждений применяется кладка из ячеистобетонных, керамзитбетонных и полистирольных блоков, следует учесть цементно-песчанные или клеевые швы кладки. Это связано в первую очередь с тем, что для кладки в СП 23-10-2004 при теплотехническом расчете ограждений при определении приведенного значения сопротивления теплопередаче значения теплопроводности материалов должны приниматься с учетом наличия швов. В СП 23-101-2004 в приложении Д для таких материалов, как ячеистый бетон, керамзитобетон, полистиролбетон и т.д. представлены теплотехнические характеристики сплошных(цельных) материалов. Связано это с тем, что фактически швы в кладке обладают гораздо большей теплопроводностью, чем сам материал кладки. Для корректного ограждающих конструкций с применении вышеуказанных материалов также необходимо вводить коэффициент теплотехнической однородности.