Как собрать защиту от импульса напряжения самому. Устройство импульсной защиты. по току молнии

Импульсная защита – это устройство блокировки от чрезмерного напряжения в виде импульсов тока. Она устанавливается в квартирах и домах, обладает такими преимуществами, как высокая эффективность, низкая стоимость, совершенная конструкция.

Такой тип защиты оборудования силовых распределительных линий до 1000 вольт служит для защиты от повышенных напряжений, связанных с импульсами.

Источниками импульсов могут быть:

  • Разряды молнии в цепь электропитания или в молниеотвод объекта рядом с вводом питания в объект.
  • Разряды молнии на расстоянии до нескольких тысяч метров возле коммуникаций объекта.
  • Подключения достаточно мощных нагрузок, замыкания в линиях распределения питания.
  • Помехи от электромагнитных волн, от электронных приборов и оборудования.

В офисах и квартирах имеется много бытовой, компьютерной и другой дорогостоящей техники, которая потребляет электроэнергию. Поэтому, во избежание риска повреждений и выхода из строя от импульсных перенапряжений оборудования, лучше приобрести и установить защитное устройство.

Достаточно одного резкого перепада напряжения для выхода из строя сразу нескольких бытовых устройств. Особенно актуален этот вопрос в дачных домиках, загородных домах, в которых система электроснабжения, отопления, водоснабжения подключены к автономным сетям питания. Нельзя пренебрегать требованиями электробезопасности.

Импульсная защита служит для ограничения напряжения в виде импульсов от разрядов молнии, подключений мощной индуктивной нагрузки (Это могут быть большие электромоторы, трансформатор) и т.п.

Типы и классы защиты от импульсов напряжения

  1. Тип 1. Класс В . Устройства применяются при возможном прямом ударе молнии в цепь питания или рядом с объектом в землю. Если ввод питания осуществлен по воздушной линии, а также, если имеется молниеотвод, то установка импульсной защиты строго обязательна. Оборудование монтируется в железном корпусе, рядом с входом питания в здание, либо в распределительном щите.
  2. Тип 2 . Класс С . Имеет уменьшенную защиту от импульсов напряжения, монтируется у входа в электроустановку и в помещение, как 2-й уровень защиты. Монтируется в распределительных щитках.
  3. Тип 3. Класс D . Защищает электрооборудование от остаточного перенапряжения, несимметричных токов, помех высокой частоты. Монтируется вблизи электрических приборов. Рекомендуется защиту от импульсов устанавливать рядом с потребителем, не более пяти метров от него, а если есть молниеотвод, то непосредственно на входе питания потребителя, так как ток в молниеотводе провоцирует значительный по величине импульс в электропроводке.

Принцип действия

Действие защиты от импульсов напряжения можно легко объяснить, так как в нем простая схема вывода перенапряжения. В схему устройства вмонтирован шунт, по которому ток поступает к нагрузке потребителя, подключенного к питанию. От шунта к земле подключена перемычка, которая состоит из разрядника или варистора.

При нормальном напряжении в сети варистор имеет сопротивление несколько мОм. При появлении на линии перенапряжения, варистор начинает пропускать через себя ток, поступающий далее в землю. Так просто действует защита от импульсов. При нормализации напряжения питания варистор перестает быть проводником тока, и питание поступает к потребителю по встроенному шунту.

Устройство защиты

Импульсная защита построена на основе варисторов или разрядников. Также имеются устройства индикации, которые подают сигналы о выходе из строя защиты. К недостаткам варисторной защиты можно отнести тот факт, что при срабатывании защиты варисторы нагреваются, и для повторной работы требуется время на охлаждение. Это отрицательно сказывается на работе при грозовой погоде и множественных ударах молнии.

Часто защита на варисторах производится с приспособлением для закрепления на . Варистор легко меняется путем обычного его извлечения из корпуса защиты и монтажа нового варистора.

Практическое применение

Чтобы надежно защитить потребитель энергии от перенапряжения, сначала необходимо проложить хорошее . Для этого используют схемы с защитным и разделенным нулевым проводником.

Далее, устанавливаются защитные устройства таким образом, чтобы расстояние от соседних устройств защиты было не менее 10 метров по проводу линии питания. Это правило важно для правильного порядка срабатывания защиты.

Если для питания используется воздушная линия, то оптимальным вариантом применения будет импульсная защита на базе плавких предохранителей и разрядников. В главном щитке дома устанавливаются защиты на варисторах 1 и 2 класса, в этажных щитках – 3 класса. Чтобы дополнительно защитить электрические потребители, в розетки втыкаются переносные импульсные защиты в виде удлинителей с предохранителями.

Такие меры защиты уменьшают вероятность воздействия от повышенного напряжения, но полной гарантии не дают. Поэтому, во время грозовой погоды лучше всего, по возможности выключить чувствительные приборы и оборудование.

Как защитить само устройство защиты

Само устройство защиты также нуждается в обеспечении защиты от повреждений. Они могут возникнуть вследствие разрушения деталей при поглощении импульсов перенапряжения. Бывали случаи, что сами устройства защиты загорались, и являлись причиной пожара.

  • Устройства класса 1 защищаются вставками на 160 ампер.
  • Класс 2 предохраняется вставками на 125 ампер.

Если номинал предохранителя выше рекомендованного, то нужно установить вспомогательную вставку, защищающую детали щита от неисправностей. При длительном действии большого напряжения на защиту, варисторы сильно нагреваются. Терморасцепитель выключает защиту от питания в случае достижения варистором температуры критического значения.

Импульсная защита может быть оборудована . Защита 1 класса может защищаться только вставками, так как вставки отключают токи короткого замыкания при большом напряжении.

Можно сделать вывод, что правильное использование импульсной защиты от перенапряжений дает возможность эффективно предохранять оборудование от неисправностей, вызванных чрезмерным напряжением линии питания.

Импульсная защита — как выбрать
по току молнии

Электроэнергия в здание может поступать по воздушной линии со следующими свойствами:

  • Изолированные провода, самонесущие.
  • Простые провода без изоляции.

Если провода воздушной линии и ее элементы имеют изоляцию, то это оказывает влияние на устройство действующей защиты и схемы подключения, а также снижается действие удара молнии.


УЗИП в системе TN-C-S

При подключении дома от изолированной линии, заземление производится по схеме, изображенной на рисунке. Импульсная защита устанавливается между фазами и РЕN. Место разъединения РЕN на РЕ и N проводники при отдалении на 30 м от дома требует вспомогательной защиты.

Если на доме есть установленная молниезащита, имеются коммуникации из металла, то это оказывает влияние на схему и выбор подключения защиты от импульсов, а также отрицательно влияет на электробезопасность дома.

Варианты предполагаемых схем

1 вариант. Условия.

Электроэнергия поступает по изолированной воздушной линии.

  • Без защиты от молнии.
  • Нет металлоконструкций снаружи дома. Схема заземления выполнена по схеме TN – C — S.

Решение

В таком случае маловероятно, что будет непосредственный удар молнии в дом, по причине:

  • Наличия изоляции проводов воздушной линии.
  • Отсутствия громоотвода и наружных металлических коммуникаций на доме.

В итоге, достаточно будет защиты от импульсов большого напряжения, которые имеют форму 8/20 мкс для тока. Подходит защита от импульсов со смешанным классом защит в одном корпусе.

Диапазон тока от импульсов напряжения выбирается из интервала от 5 до 20 килоампер. Лучше выбрать наибольшее значение.

2 вариант. Условия.

Электрический ток поступает по изолированной воздушной линии.

  • Отсутствует защита от молнии.
  • Снаружи дома есть коммуникации из металла для газо- или водопровода. Система заземления выполнена по схеме TN-C-S.

Решение

Если сравнивать с предыдущим вариантом, то здесь может быть удар молнии по трубе с током до 100 килоампер. Внутри трубы этот ток разделится на два конца по 50 килоампер. С нашей стороны здания эта часть поделится по 25 килоампер на здание и заземление.

РЕN провод возьмет на себя часть в 12,5 килоампер, а остальная часть импульса такой же величины через устройство защиты будет проходить в фазный проводник. Можно применять такое же устройство защиты, как и раньше.

3 вариант. Условия.

Электроэнергия поступает по воздушной линии без изоляции.

Решение

Большая вероятность разряда молнии в провода, у здания применяется схема заземления ТТ.


УЗИП в системе ТТ

Должна быть обеспечена импульсная защита, как от проводов фаз относительно земли, так и от нулевого провода. Защита от нулевого провода относительно земли используется редко, по причине местных условий.

При монтаже проводов к открытой линии без изоляции, на безопасность дома оказывает влияние форма ответвления, которая может производиться:

  • Кабелем.
  • Проводами с изоляцией, как на изолированной воздушной линии.
  • Оголенными проводами.

При ответвлениях по воздуху меньше рисков создают изолированные провода сечением не менее 16 мм кв. В такие провода вероятность удара молнии очень мала. Разряд молнии возможен в узел разделки проводов возле изоляторов на вводе. В этом случае на фазе возникнет половина напряжения от разряда молнии.

Одним из факторов, приводящих к повреждениям электрооборудования, являются атмосферные перенапряжения , связанные с ударами молний. Действия атмосферного электричества разделяются на:

  • прямые удары молний электрооборудование;
  • удары молний рядом с электрооборудованием, воздействующие на него при помощи мощного электромагнитного импульса;
  • удары молний вдали от потребителей, электромагнитная волна от которых воспринимается полупроводниковыми устройствами телемеханики и связи и создает помехи для их работы.

Воздействия атмосферных перенапряжений характерны небольшой длительностью импульса – порядка десятков миллисекунд. Но на это время напряжение в сети многократно повышается. Это приводит к пробоям изоляции и повреждениям как линий связи, так и питающихся от них потребителей.

Для защиты от перенапряжений, создаваемых грозовыми разрядами, используют устройства, ограничивающие амплитудное значение напряжения до уровня, безопасного для изоляции электрооборудования.

Искровые и вентильные разрядники, ОПН

Первыми устройствами, примененными для ограничения величин перенапряжений в сети, были искровые разрядники . Действие их основано на пробое воздушного промежутка фиксированной длины при определенном напряжении.

Разрядник подключается между защищаемыми фазами и контуром молниезащиты. Для каждой из фаз устанавливается персональный элемент. Он может выполняться открытым и состоять из расположенных торцами напротив друг друга металлических прутков. А может состоять из электродов, заключенных в изолирующую оболочку.

В момент возникновения грозового перенапряжения искровой промежуток разрядника пробивается, и мощность импульса уходит в землю через контур молниезащиты. За счет этого уровень напряжения ограничивается. По окончании импульса дуга гаснет, и разрядник снова готов к работе. В нормальном режиме он не потребляет тока и не оказывает влияния на режим работы электроустановки.

Вторым устройством, защищающим изоляцию от перенапряжений, были вентильные разрядники . Они состоят из двух элементов, соединенных последовательно: многократного искрового промежутка и гасящего резистора. При перенапряжении искровые промежутки пробиваются, через них и резистор протекает ток. В результате снижается напряжение в сети. Как только возмущающее воздействие снимается, дуга в искровых промежутках гаснет, и разрядник приходит в исходное положение.

Вентильные разрядники герметичны и работают бесшумно, в отличие от искровых, выделяющих в атмосферу продукты горения дуги.

Вентильные и искровые разрядники применяются только в электроустановках высокого напряжения.

Предыдущие защитные устройства заменяются ограничителями перенапряжений (ОПН) .

Внутри ОПН находится варистор: резистор с нелинейной зависимостью сопротивления от приложенного к нему напряжения . При превышении порогового значения напряжения ток через варистор резко возрастает, предотвращая дальнейшее его повышение. При прекращении грозового или коммутационного импульса ОПН переходит в исходное состояние.


По сравнению с предыдущими устройствами ОПН надежнее и меньших габаритов. Их характеристики подбираются более точно, что позволило выработать гибкую стратегию их эффективного применения.


Модульные ОПН для сетей низкого напряжения получили название устройства защиты от импульсных перенапряжений (УЗИП) .

К ним относятся:


Форма волны импульсного перенапряжения стандартизирована для случаев:

  • прямое попадание молнии – 10/350 мкс ;
  • воздействие непрямого действия молнии – 8/20 мкс .


По назначению УЗИП по стандарту МЭК разделяются на типы 1-3, по ГОСТ Р 51992-2002 они разделяются на классы испытаний (I – III). Соответствие и назначение этих характеристик указано в таблице.

Типы по IEC 61643 Классы по ГОСТ Р 51992-2002 Назначение Место установки
1 I Для ограничения перенапряжений от прямых ударов молний На вводе в здание, в главном распределительном щите
2 II Для ограничения перенапряжений от далеких ударов молний и коммутационных перенапряжений На вводах, где не существует опасности прямых ударов
1+2 I+II Объединяются характеристики типов УЗИП 1 и 2 Как для типов 1 или 2
3 III Для защиты чувствительных потребителей. Имеют самый низкий уровень защитного напряжения Для непосредственной установки у потребителей

По конструктивному исполнению УЗИП выпускаются с разным числом полюсов: от одного до четырех.

Выбор УЗИП

Для начала нужно определить степень воздействия молний или коммутационных перенапряжений на защищаемый объект. Для этого используются данные об интенсивности грозовых разрядов в месте установки, учитывается наличие устройств молниезащиты, линий электропередачи и их протяженность. Если ввод в дом выполнен кабельной линией, то она более защищена от прямых ударов молний, чем воздушная.

Электроустановка здания разделяется на зоны, защищаемые УЗИП соответствующих классов. Задача такого разделения: ступенчато снизить уровень перенапряжения так, чтобы более мощные устройства гасили основную волну перенапряжения, а по мере ее продвижения по распределительной сети устройства низшего класса дополнительно снижали ее воздействие, обеспечивая минимум в точке подключения потребителей.

Одновременно с этим безопасность электрооборудования обеспечивается выбором класса изоляции, соответствующего зоне защиты .


На вводе в здание устанавливаются УЗИП типов 1 или 1+2 . Они выдерживают импульс от прямого удара молнии, снижая его до величины, допустимой для электрооборудования с классом изоляции IV (до 6 кВ) . Точка установки УЗИП – во вводном щитке, ВРУ (вводном распределительном устройстве) или ГРЩ (главном распределительном щитке).

Класс изоляции электрооборудования, расположенного в этих распределительных устройствах после УЗИП, должен быть не хуже III (до 4 кВ) .

Следующий рубеж защиты – распределительные щитки , подключенные к ВРУ или ГРЩ в глубине здания. На их входе устанавливаются УЗИП типа II , снижающие уровень перенапряжения до величины, приемлемой для электрооборудования с классом изоляции II (2.5 кВ) . Так защищаются потребители, включающиеся непосредственно в розетки питания и устройства освещения.

При необходимости защиты электрооборудования, наиболее чувствительного к помехам (компьютерная техника, устройства связи), применяются УЗИП типа 3 , устанавливающиеся в непосредственной близости от защищаемого объекта.

Требования к подключению УЗИП

При трехфазном питании и системе заземления TN-C к УЗИП подключаются все три фазы напряжения. В случае с системами TN-C-S или TN-S – к трем фазам добавляется нулевой рабочий проводник. Вывод «РЕ» соединяется с главной заземляющей шиной ВРУ или шиной РЕ распределительного щитка. Главная заземляющая шина соединяется с контуром заземления здания.

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.

При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.

Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!

Бурное развитие электронного оборудования, его усложнение и миниатюризация привели к массовому применению микропроцессоров в управлении производственными и технологическими процессами, системами обеспечения жизнедеятельности человека. Стремительная миниатюризация оборудования затронула не только электронную, но и электротехническую промышленность. Обратной стороной миниатюризации стала чувствительность электронного и электротехнического оборудования к импульсным перенапряжениям и высокочастотным помехам. Выход из строя оборудования в этих случаях может оказаться наименьшим из бед, значительно больше ущерба приносит остановка производства, срыв трафика, потеря данных. Импульсное перенапряжение - это кратковременное напряжение длительностью от единиц наносекунд до десятков микросекунд, максимальное значение которого многократно превышает значение номинального напряжения электрической сети или линии связи. Импульсные перенапряжения носят вероятностный характер, их параметры определяются источниками возникновения и электрическими свойствами проводников в которых они возникают. Источниками возникновения импульсных перенапряжений являются удары молний, коммутационные процессы в распределительных электрических сетях и электромагнитные помехи, создаваемые промышленными электроустановками и электронными приборами.

Удар молнии - электрический разряд атмосферного происхождения между грозовым облаком и землей или между грозовыми облаками, состоящий из одного или нескольких импульсов тока. Во время протекания разряда по каналу молнии протекает электрический ток, достигающий значений 200 кА и более. Прямой удар молнии (ПУМ) в объект (сооружение, здание и др.) может привести к механическим повреждениям конструкций, поражению людей, сбою или выходу из строя электрических и электронных систем.

При межоблачных разрядах или ударах молнии радиусе до нескольких километров вблизи от объектов и коммуникаций входящих в объект в металлических элементах конструкций и коммуникациях возникают индуцированные перенапряжения приводящие к пробою изоляции проводников и оборудования, сбою или выходу из строя электрических и электронных систем.

Импульсные перенапряжения также возникают при коммутации индуктивных и емкостных нагрузок, коротких замыканиях в распределительных электрических сетях высокого и низкого напряжения.

Защита оборудования объектов от импульсных перенапряжений может быть обеспечена при выполнении комплекса технических мероприятий включающего:

Создание системы внешней молниезащиты (МЗС);

Создание системы заземления;

Создание системы уравнивания потенциалов путем присоединения к главной заземляющей шине (ГЗШ) всех металлических элементов конструкции, входящих в сооружение коммуникаций, корпусов оборудования за исключением токоведущих и сигнальных проводников;

Экранирование сооружения, оборудования и сигнальных проводников;

Установка на всех токоведущих и сигнальных проводниках устройств защиты от импульсных перенапряжений (УЗИП) с целью уравнивания их потенциалов относительно земли.

Литература: 1. МЭК 62305 «Защита от удара молнии» Части 1-5; 2. ГОСТ Р 50571.19-2000 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Глава 44. Защита от перена пряжений. Раздел 443. Защита электроустановок от грозовых и коммутационных перенапряжений».3. ПУЭ (7-е изд.)4. СО–153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций».5. Технические материалы компании Hakel.

3.7. Импульс напряжения и временное перенапряжение

Искажение формы кривой питающего напряжения может происходить за счет появления высокочастотных импульсов при коммутациях в сети, работе разрядников и т.д. Импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня. Величина искажения напряжения при этом характеризуется показателем импульсного напряжения (рис.3.7).

Рис.3.7 Параметры импульсного напряжения

(3.22)

Где U имп - значение импульсного напряжения, В.

Амплитудой импульса называется максимальное мгновенное значение импульса напряжения. Длительность импульса - это интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня.

Показатель - импульсное напряжение стандартом не нормируется.

Временное перенапряжение - повышение напряжения в точке электрической сети выше 1,1 U ном продолжительностью более 10 мс, возникающие в системах электроснабжения при коммутациях или коротких замыканиях (рис. 3.8).

Рис.3.8 Временное перенапряжение

Временное перенапряжение характеризуется коэффициентом временного перенапряжения (K пер.U): это величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.

(3.23)

Длительностью временного перенапряжения называется интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения.

(3.24)

Коэффициент временного перенапряжения стандартом также не нормируется.

Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений не превышают значений приведеных в таблице 3.3 .

Таблица 3.3 Зависимость коэффициента временного перенапряжения от длительности перенапряжения

В среднем за год в точке присоединения возможны около 30 временных перенапряжений.

При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухозаземленной нейтралью, возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения, а длительность нескольких часов.