Ардуино фоторезистор управление светом. Схема фотореле и правила подключения. Робот отслеживает траекторию для перемещения с использованием фоторезистора

  1. Фототорезистор: http://ali.ski/5GDvP7
  2. Диоды и резисторы: http://fas.st/KK7DwjyF
  3. Макетная плата: http://ali.ski/rq8wz8
  4. Arduino uno: http://ali.ski/gC_mOa

В этом уроке мы подключим к Arduino фоторезистор. который будет управлять встроенным светодиодом.

Фоторезистор: Сопротивление фоторезисторов уменьшается под воздействием света и увеличивается в темноте. Фоторезисторы просты в использовании, но достаточно медленно реагируют на изменение уровня освещенности и имеют весьма низку. точность. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при дневном освещении до более чем 10 МОм в темноте.

Сам фоторезистор мы будем подключать к земле через резистор в 10 кОМ и эту же ножку будем подключать к аналоговому пину Ардуино A0, вторую ножку фоторезистора будем подключать к 5 вольтам ардуино. Все это наглядно в приведено в схеме вначале статьи.

После правильного подключения фоторезистора к ардуино, нужно скопировать код приведенный ниже, вставить его в программу Arduino ide и загрузить весь этот программный код в ардуино.

Int PhotosensorPin = A0; //Указываем пин к которому подклюен Фоторезистор unsigned int sensorValue = 0; //Объявляем переменную для хранения значений. void setup() { pinMode(13, OUTPUT); Serial.begin(9600); } void loop() { sensorValue = analogRead(PhotosensorPin); //Считываем значения с фоторезистора if(sensorValue<700) digitalWrite(13, HIGH); //Включаем else digitalWrite(13, LOW); // Выключаем Serial.print(sensorValue, DEC); //Вывод данных с фоторезистора (0-1024) Serial.println(""); delay(500); }

После загрузки программного кода в ардуино, необходимо открыть монитор порта.

Теперь, если свет падает на фоторезистор, и встроенный светодиод выключен, заслоните фоторезистор рукой, и вы увидите, что в определенный момент светодиод включится! Так же можно посмотреть изменения значения с фоторезистора в мониторе порта.

Демонстрацию работы фоторезистора можно посмотреть в видео ниже.

Видео:

  1. Фототорезистор: http://ali.ski/5GDvP7
  2. Диоды и резисторы: http://fas.st/KK7DwjyF
  3. Макетная плата: http://ali.ski/rq8wz8
  4. Arduino uno: http://ali.ski/gC_mOa

В этом уроке мы подключим к Arduino фоторезистор. который будет управлять встроенным светодиодом.

Фоторезистор: Сопротивление фоторезисторов уменьшается под воздействием света и увеличивается в темноте. Фоторезисторы просты в использовании, но достаточно медленно реагируют на изменение уровня освещенности и имеют весьма низку. точность. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при дневном освещении до более чем 10 МОм в темноте.

Сам фоторезистор мы будем подключать к земле через резистор в 10 кОМ и эту же ножку будем подключать к аналоговому пину Ардуино A0, вторую ножку фоторезистора будем подключать к 5 вольтам ардуино. Все это наглядно в приведено в схеме вначале статьи.

После правильного подключения фоторезистора к ардуино, нужно скопировать код приведенный ниже, вставить его в программу Arduino ide и загрузить весь этот программный код в ардуино.

Int PhotosensorPin = A0; //Указываем пин к которому подклюен Фоторезистор unsigned int sensorValue = 0; //Объявляем переменную для хранения значений. void setup() { pinMode(13, OUTPUT); Serial.begin(9600); } void loop() { sensorValue = analogRead(PhotosensorPin); //Считываем значения с фоторезистора if(sensorValue<700) digitalWrite(13, HIGH); //Включаем else digitalWrite(13, LOW); // Выключаем Serial.print(sensorValue, DEC); //Вывод данных с фоторезистора (0-1024) Serial.println(""); delay(500); }

После загрузки программного кода в ардуино, необходимо открыть монитор порта.

Теперь, если свет падает на фоторезистор, и встроенный светодиод выключен, заслоните фоторезистор рукой, и вы увидите, что в определенный момент светодиод включится! Так же можно посмотреть изменения значения с фоторезистора в мониторе порта.

Демонстрацию работы фоторезистора можно посмотреть в видео ниже.

Видео:

Автоматизация подачи освещения в квартире, в доме или на улице достигается за счет применения фотореле. При правильной настройке оно будет включать свет при наступлении темноты и отключать в светлое время суток. Современные устройства содержат настройку, за счет которой можно устанавливать срабатывание в зависимости от освещенности. Они являются составной частью системы "умного дома", берущей на себя значительную часть обязанностей хозяев. Схема фотореле, прежде всего, содержит резистор, изменяющий сопротивление под действием света. Ее легко собрать и настроить своими руками.

Принцип действия

Схема подключения фотореле для включает датчик, усилитель и Фотопроводник PR1 под действием света изменяет сопротивление. При этом изменяется величина проходящего через него электрического тока. Сигнал усиливается составным транзистором VT1, VT2 (схема Дарлингтона), а с него поступает на исполнительный механизм, которым является K1.

В темноте сопротивление фотодатчика составляет несколько мОм. Под действием света оно снижается до нескольких кОм. При этом открываются транзисторы VT1, VT2, включающие реле K1, управляющим цепью нагрузки через контакт K1.1. Диод VD1 не пропускает ток самоиндукции при выключении реле.

Несмотря на простоту, схема фотореле обладает высокой чувствительностью. Чтобы ее выставить на необходимый уровень, используется резистор R1.

Напряжение питания подбирается по параметрам реле и составляет 5-15 В. Ток обмотки не превышает 50 мА. Если необходимо его увеличить, можно применить более мощные транзисторы и реле. Чувствительность фотореле повышается с увеличением напряжения питания.

Вместо фоторезистора можно установить фотодиод. Если необходим датчик с повышенной чувствительностью, используются схемы с фототранзисторами. Их применение целесообразно с целью экономии электричества, поскольку минимальный предел срабатывания обычного прибора составляет 5 лк, когда окружающие предметы еще различимы. Порог 2 лк соответствует глубоким сумеркам, после которых через 10 мин наступает темнота.

Фотореле целесообразно применять даже при ручном управлении освещением, поскольку можно забыть выключить свет, а датчик самостоятельно "позаботится" об этом. Установить его несложно, а цена вполне доступна.

Характеристики фотоэлементов

Выбор фотореле определяют следующие факторы:

  • чувствительность фотоэлемента;
  • напряжение питания;
  • коммутируемая мощность;
  • внешняя среда.

Чувствительность характеризуется как отношение образующегося фототока к величине внешнего потока света и измеряется в мкА/лм. Она зависит от частоты (спектральная) и интенсивности света (интегральная). Для управления освещением в быту важна последняя характеристика, зависящая от суммарного светового потока.

Величину номинального напряжения можно найти на корпусе прибора или в сопроводительном документе. Устройства зарубежного производства могут иметь другие стандарты напряжения питания.

От мощности светильников, к которым подключено фотореле, зависит нагрузка на его контакты. Схемы фотореле освещения могут предусматривать прямое включение ламп через контакты датчика или через пускатели, когда нагрузка велика.

На открытом воздухе сумеречный выключатель помещается под герметичной прозрачной крышкой. Она является защитой от влаги и осадков. При работе в холодный период применяется подогрев.

Модели заводского изготовления

Раньше схема фотореле собиралась своими руками. Сейчас в этом нет необходимости, так как устройства стали дешевле, а функциональность расширилась. Их применяют не только для внешнего или внутреннего освещения, но также для управлением поливом растений, системой вентиляции и др.

1. Фотореле ФР-2

Модели заводского изготовления широко используются в устройствах автоматики, например, для управления уличным освещением. Часто можно видеть днем горящие фонари, которые забыли выключить. При наличии фотодатчиков нет необходимости в ручном управлении освещением.

Схема фотореле фр-2 промышленного изготовления применяется для автоматического управления уличным освещением. Здесь также является реле К1. К базе транзистора VT1 подключены фоторезистор ФСК-Г1 с резисторами R4 и R5.

Питание производится от однофазной сети 220 В. Когда освещенность мала, сопротивление ФСК-Г1 имеет большую величину и сигнала на базе VT1 недостаточно для его открывания. Соответственно закрыт и транзистор VT2. Реле K1 включено, и его рабочие контакты замкнуты, поддерживая лампы освещения горящими.

Когда освещенность увеличивается до порога срабатывания, снижается сопротивление фоторезистора и открывается после чего реле K1 отключается, размыкая цепь питания ламп.

2. Виды фотореле

Выбор моделей достаточно велик, чтобы можно было выбрать подходящую:

  • с выносным датчиком, расположенным вне корпуса изделия, к которому подводятся 2 провода;
  • люкс 2 - устройство с высокой надежностью и уровнем качества;
  • фотореле с питанием 12 В и нагрузкой не выше ;
  • модуль с таймером, монтирующийся на ДИН-рейку;
  • устройства ИЭК отечественного производителя с высоким качеством и функциональностью;
  • AZ 112 - автомат с высокой чувствительностью;
  • ABB, LPX - надежные производители устройств европейского качества.

Способы подключения фотореле

Перед приобретением датчика необходимо подсчитать потребляемую светильниками мощность и взять с запасом 20 %. При значительной нагрузке схема уличного фотореле предусматривает дополнительную установку электромагнитного пускателя, обмотка которого должна включаться через контакты фотореле, а силовыми контактами коммутировать нагрузку.

Для дома такой способ применяется редко.

Перед установкой проверяется напряжение сети питания ~220 В. Подключение производится от автоматического выключателя. Фотодатчик устанавливается таким образом, чтобы свет от фонаря не попадал на него.

На приборе применяются клеммы для подключения проводов, что делает монтаж проще. Если они отсутствуют, применяется распределительная коробка.

За счет применения микропроцессоров схема подключения фотореле с другими элементами приобрела новые функции. В алгоритм действий внесли таймер и датчик движения.

Удобно, когда светильники автоматически включаются при прохождении человека по лестничной площадке или по дорожке сада. Причем срабатывание происходит только в темное время суток. За счет применения таймера фотореле не реагирует на свет фар от проезжающих автомобилей.

Простейшая схема подключения таймера с датчиком движения - последовательная. Для дорогих моделей разработаны специальные программируемые схемы, учитывающие различные условия эксплуатации.

Фотореле для уличного освещения

Для подключения фотореле схема наносится на его корпус. Ее можно найти в документации на прибор.

Из прибора выходят три провода.

  1. Нулевой проводник - общий для светильников и фотореле (красный).
  2. Фаза - подключается на вход прибора (коричневый).
  3. Потенциальный проводник для подачи напряжения от фотореле на светильники (синий).

Устройство работает по принципу прерывания или включения фазы. Цветовая маркировка у разных производителей может отличаться. Если в сети есть проводник "земля", его к прибору не подключают.

В моделях со встроенным датчиком, который находится внутри прозрачного корпуса, работа уличного освещения автономна. К нему нужно только подвести питание.

Варианты с выносом датчика применяются в случае, когда электронную начинку фотореле удобно разместить в щите управления с другими приборами. Тогда нет необходимости в автономной установке, протягивании электропроводки питания и обслуживании на высоте. Электронный блок размещается внутри помещения, а датчик выносится наружу.

Особенности фотореле для уличного освещения: схема

При установке фотореле на улице надо учитывать некоторые факторы.

  1. Наличие питающего напряжения и соответствие мощностей контактов и нагрузки.
  2. Не допускается установка приборов рядом с легко воспламеняющимися материалами и в агрессивной среде.
  3. Основание прибора размещается внизу.
  4. Перед датчиком не должны находиться качающиеся предметы, например, ветви деревьев.

Подсоединение проводов выполняется через распределительную коробку для улицы. Она закрепляется рядом с фотореле.

Выбор фотореле

  1. Возможность регулирования порога срабатывания позволяет производить подстройку чувствительности датчика в зависимости от времени года или при пасмурной погоде. В результате обеспечивается экономия электричества.
  2. Минимум трудозатрат требуется при монтаже фотореле со встроенным чувствительным элементом. При этом не требуются особые навыки.
  3. Реле с таймером хорошо программируется для своих потребностей и работы в установленном режиме. Можно настроить прибор для отключения в ночное время. Индикация на корпусе прибора и кнопочное управление позволяют легко производить настройку.

Заключение

Применение фотореле позволяет автоматически контролировать период включения ламп. Теперь уже отпала необходимость в профессии фонарщика. Схема фотореле без участия человека по вечерам зажигает свет на улицах и выключает его утром. Устройства могут управлять системой освещения, что повышает ее ресурс и делает эксплуатацию проще.

Фоторезисторы изготавливают из полупроводниковых материалов, которые изменяют своё сопротивление в зависимости от степени освещённости. Основное их отличие от других фотоэлектрических приборов заключается в высокой стабильности параметров и линейности изменения сопротивления в достаточно широком диапазоне. Последнее свойство позволяет использовать фоторезисторы не только в цифровой автоматике, но и в аналоговой технике, например, в качестве гальванически изолированных регуляторов громкости звука.

Фоторезисторы являются относительно инерционными элементами с гораздо более низким (единицы килогерц) быстродействием по сравнению с фотодиодами и фототранзисторами. После резких перепадов освещённости, их сопротивление изменяется не скачком, а «плывёт» в течение некоторого времени. Это надо учитывать в практической работе и выдерживать для адаптации к свету небольшие паузы. Насколько «небольшие», подскажет эксперимент.

В зависимости от спектральной чувствительности фоторезисторы делятся на две большие группы: для работы в видимой и инфракрасной части спектра. Электрические схемы включения у них совпадают (Рис. 3.44, а…м). Единственное, что надо предварительно узнать по даташиту, - это максимально допустимое рабочее напряжение. В частности, на фоторезисторы СФ2-5, СФЗ-4А/Б, СФЗ-5 нельзя подавать питание больше, чем 1.3…2 В. Подавляющее же большинство фоторезисторов могут работать при напряжениях 5…50 В. Их темновое сопротивление составляет 1…200 МОм, а в освещенном состоянии - на два-три порядка меньше.

Рис. 3.44. Схемы подключения фоторезисторов к МК {начало)-.

а) резисторы /?У, образуют делитель напряжения. При освещении фоторезистора /?Уего сопротивление уменьшается. Резистор J служит защитой на случай полного замыкания под- строечного резистора и ошибочного перевода линии МКв режим выхода с ВЫСОКИМ уровнем. Если резистор R2 постоянный, то резистор R3 можно заменить перемычкой;

в) подключение фоторезистора /?2к МК с привязкой к общему проводу, а не к цепи питания. При освещении фоторезистора R2 напряжение на входе МК снижается;

Рис. 3.44. Схемы подключения фоторезисторов к МК (продолжение):

г) экономичное «реле Турченкова» на германиевых транзисторах VTI, К72 разной проводимости. Резистором уста на вливают порог срабатывания;

д) фоторезистор RI определяет ток базы транзистора УТ1, поскольку он входит в верхнее плечо делителя RI, R2. Следует установить движок переменного резистора в такое положение, чтобы ток базы транзистора УТ1 не превысил норму при яркой освещённости фоторезистора;

е) в исходном состоянии фоторезистор /?2освещён, транзистор УТ1 закрыт, светодиод НИ погашен. Когда уровень освещённости фоторезистора понизится до определённого порога (регулируется резистором R3), то транзистор открывается, светодиод загорается и на входе МК устанавливается НИЗКИЙ уровень;

ж) регистратор коротких вспышек света или приёмник импульсно-модулированных сигналов. Транзистор VTI находится в режиме отсечки. Конденсатор С/устраняет ложные срабатывания от медленных изменений освещённости фона, например, при смене дня ночью;

з) транзистор VTI повышает чувствительность фотодатчика R2, что позволяет использовать обычную линию порта МК, а не только вход АЦП. Резистор задаёт положение рабочей точки транзистора УТ1\

и) если оба фоторезистора R2, освещены, то на входе МК присутствует НИЗКИЙ уровень (регулируется резистором R1). Если один (любой) из фото рези сто ров будет затемнён, то суммарное «фотосопротивление» резко увеличится и на входе МК появится ВЫСОКИЙ уровень. Фоторезисторы выполняют логическую функцию «световое И»;

Рис. 3.44. Схемы подключения фоторезисторов к МК {окончание):

к) резистором R3 регулируют порог срабатывания ОУ DAI (компаратор напряжений). Сопротивление резистора R2 выбирается примерно таким же, как RI в «неактивном» состоянии. При значительном удалении фоторезистора следует экранировать его соединительные провода;

л) конденсаторы С/, С2 повышают стабильность измерений, устраняют импульсные помехи и создают небольшой гистерезис при резких колебаниях освещённости;

м) внутренний аналоговый компаратор МК используется для оценки уровня освещённости. Используется метод сравнения измеряемого напряжения с «пилой», которую вырабатывает сам МК на отрицательном выводе компаратора (линия входа временно становится выходом).

Фотодиоды в схемах на МК

Фотодиоды относятся к классу полупроводниковых приборов, в основе работы которых лежит внутренний фотоэффект При облучении /?-А7-перехода фотонами возникает генерация носителей тока внутри полупроводника. Изменение тока эквивалентно изменению сопротивления, что легко зафиксировать и измерить.

Фотодиоды широко применяются для регистрации световых излучений. Их достоинство, по сравнению с фоторезисторами и фототранзисторами, заключается в высоком быстродействии и хорошей чувствительности.

Различают два основных режима работы фотодиодов:

Диодный (фотодиодный, фоторезисторный) с обратным смещением;

Генераторный (фотогальванический, фотовольтаический) без смещения.

Диодный режим используется чаще и характеризуется широким диапазоном

изменения обратного сопротивления и хорошим быстродействием. Генераторный режим имеет следующие недостатки: большая эквивалентная ёмкость и высокая инерционность. Достоинство - малый уровень собственных шумов.

Фотодиоды выпускают фирмы: Vishay, OSRAM, Hamamatsu Photonics, «Кварц» и др. Типовые параметры: длина волны 850…950 нм, токовая чувствительность 10…80 мкА, ширина диаграммы направленности 15…65°, время нарастания/спада 2… 100 нс, рабочая температура -55…+ 100°С. Чувствительность фотодиодов снижается с повышением температуры и напряжения. Темновой ток возрастает в 2…2.5 раза на каждые 10°С, из-за чего в схему часто вводят термокомпенсацию.

На Рис. 3.45, а…ж показаны схемы непосредственного подключения фотодиодов к МК. На Рис. 3.46, а…е показаны схемы с усилителями на транзисторах. На Рис. 3.47, а…о - с усилителями на микросхемах.

б) соединение фотодиода BLI с цепью питания. Нажатие переключателя SI имитирует освещенное состояние фотодиода при тестовых проверках;

в) повыщение общей чувствительности за счёт параллельного включения нескольких фотодиодов BLI…Bin. Фотодиоды выполняют логическую функцию «световое ИЛИ»;

г) параллельное включение нескольких фотодиодов с привязкой к общему проводу;

д) последовательное включение фотодиодов по схеме «световое И». Позволяет обнаружить момент затемнения одного из нескольких освещенных фотоприёмников на конвейере;

е) последовательное включение нескольких фотодиодов с привязкой к общему проводу;

ж) мостовая схема включения фотодиода BLI, обладающая повыщенной чувствительностью и гистерезисом {R6). Требуется предварительное симметрирование моста резистором R3.

а) фотодиод BL1 замещает базовый резистор транзисторного усилителя;

б) мигающий светодиод НИ служит … фотоприёмником. В исходном состоянии НИ генерирует электрические (не световые!) импульсы с частотой «мигания» около 2 Гц. При внешнем освещении генерация срывается, что и фиксирует МК через транзистор VTI\

в) ключ на транзисторе VT1 повышает помехоустойчивость и увеличивает крутизну фронтов сигнала от фотодатчика BLL Конденсатор С/ устраняет помехи от колебаний освещённости;

г) оптоизолированный частотный смеситель. На вход МК поступает сигнал с разностной «световой» частотой модуляции «/, -/2» от двух светодиодов HL1 (/j) и HL2{f2). Контур/1 / должен быть настроен на разностную частоту;

д) повышение чувствительности за счёт параллельного включения двух фотодиодов ВИ, BL2. Транзистор VTI находится в отсечке и не реагирует на медленный дрейф освещённости;

е) вместо ОУ DAI можно использовать аналоговый компаратор МК. Скорость приёма «лазерного» фотодиода - до 5 Мбит/с по оптоволоконному кабелю длиной Юм… 1 км.

а) использование прецизионного усилителя DA1 (фирма Analog Devices) для обеспечения долговременной стабильности сигналов от фотодатчика BLI\

б) нестандартное включение ИК-светодиода НИ в качестве фотоприёмника инфракрасного диапазона длин волн. Резистором регулируется усиление каскада на ОУ DAI\

в) усилитель-формирователь на «телевизионной» микросхеме DA1. Резистором регулируется чувствительность фотодатчика BLI\

г) двухполярное питание ОУ DA /. Конденсатор CI устраняет «звон» на фронтах сигнала, возникающий при резкой смене освещённости. Это стандартный приём и для других схем;

д) для уменьщения внещних помехтрансимпедансный усилитель DA 1.2(это преобразователь «ток-напряжение») охвачен обратной связью через интегратор DAI.3. Питание на ОУ подаётся от выходной линии МК. Опорное напряжение 0.5 В формирует повторитель DAL /;

Рис. 3.47. Схемы подключения фотодиодов к М К через усилители на микросхемах

{продолжение):

е) фотодиоды ВЦ, 5L2 должны освещаться поочерёдно, иначе их суммарное сопротивление может получиться столь низким, что сработает перегрузка по току источника питания;

ж) конденсатор С2 устраняет «звон» при большой собственной ёмкости фотодиода ВИ\

з) измеритель цвета на фотодиоде BL1 (фирма Advances Photonics), который имеет «колоко- лообразную» чувствительность в диапазоне 150…400 нм. Перемычкой ^S/задаётся усиление;

и) стабильные параметры фотоприёма в инфракрасном диапазоне обеспечиваются прецизионной микросхемой Z)/1/ (фирма Analog Devices), фильтром С4, R4…R6 и стабилитроном VDI.

к) связка «усилитель-детектор-формирователь» на ОУ DAI с регулировкой порога {R6)\О

Рис. 3.47. Схемы подключения фотодиодов к МК через усилители на микросхемах

(окончание):

л) компаратор на микросхеме DA1 обеспечивает высокую чувствительность и помехоустойчивость. Резистором J регулируется «световой» порог под конкретный тип фотодиода BL1\

м) резистором регулируется чувствительность и выставляется рабочая точка логического элемента DDI (желательно с характеристикой триггера Шмитта, например, К561ТЛ2);

н) BL1 - трёхцветный RGB-сенсор (фирма Laser Components), DAI - четырёхканальный трансимпедансный усилитель (фирма Promis Electro Optics). Один из четырёх аналоговых каналов усилителя не используется. Сигналы с выходов М К задают режимы работы и усиление DA1\ о) высокочувствительный регистратор фото- или радиационного излучения на специализированном pin-фотодиоде ВИ (подобные изготавливаются фирмой Hamamatsu Photonics). Элемент DA 1.1 выполняет функцию трансимпедансного, а DA1.2 - обычного усилителя сигналов.

Фототранзисторы в схемах на МК

Фототранзистор - это фоточувствительный полупроводниковый прибор, по структуре подобный биполярному или полевому транзистору. Разница заключается в том, что в его корпусе предусмотрено прозрачное окно, через которое световой поток попадает на кристалл. В отсутствии внешнего освещения, транзистор закрыт, ток коллектора ничтожно мал. При попадании лучей света на/?-А7-переход базы, транзистор открывается и резко возрастает его коллекторный ток.

Фототранзисторы, в отличие от фоторезисторов, обладают высоким быстродействием, а в отличие от фотодиодов - усилительными свойствами (Табл. ЗЛО).

Фототранзистор, в первом приближении, можно представить в виде эквивалентного фотодиода, включённого параллельно коллекторному переходу обычного транзистора. Коэффициент усиления фототока прямо пропорционален /7213. следовательно, во столько же раз чувствительность фототранзистора выше, чем у фотодиода.

Главным параметром, за которым надо следить при разработке схем на фототранзисторах, является коллекторный ток. Чтобы не превысить его норму, надо ставить в коллекторе/эмиттере достаточно большие сопротивления.

Фототранзисторы выпускают фирмы: Vishay, Kingbright, Avago Technologies и др. Типовые параметры: длина волны 550…570 или 830…930 нм, ток коллектора в освещенном состоянии 0.5… 10 мА, угол половинной чувствительности 15…60°, время нарастания/спада 2…6 мкс, рабочая температура -55…+ 100°С, проводимость п-р-п.

Существуют двух- и трёхвыводные фототранзисторы. Различаются они между собой в первую очередь отсутствием/наличием отвода от базы.

В двухвыводных фототранзисторах извне имеется доступ только к коллектору и эмиттеру. Это затрудняет стабилизацию рабочей точки и делает фотоприбор зависимым от температуры окружающей среды, особенно при слабом освещении.

Двухвыводные фототранзисторы и малогабаритные фотодиоды визуально похожи как «близнецы-братья». Выяснить, «что есть что», помогает прозвонка выводов омметром. Испытательное напряжение на его зажимах должно быть не менее 0.7 В. Если сопротивление в одном направлении значительно больше, чем в другом, значит это фотодиод. Если большое сопротивление прозванивается в двух направлениях, значит это фототранзистор (или вышедший из строя фотодиод).

Трёхвыводные фототранзисторы встречаются реже двухвыводных. Для их подключения применяют обычную транзисторную схемотехнику, а именно, стабилизируют рабочую точку при помощи делителей на резисторах, вводят обратные связи, термокомпенсацию и т.д.

На Рис. 3.48, а…е показаны схемы непосредственного подключения фототранзисторов к МК. На Рис. 3.49, а…з показаны схемы с транзисторными усилителями, на Рис. 3.50, а…г - с усилителями на микросхемах.

Рис. 3.48. Схемы непосредственного подключения фототранзисторов к МК:

а) фототранзистор 5L/ включается по схеме усилителя с общим эмиттером. Допускается его работа в режиме микротоков коллектора (большое сопротивление резистора RI), но при этом ухудшается температурная стабильность. Вместо входа АЦП МК часто используют обычную цифровую линию порта с пороговой фиксацией состояния «есть свет»/«нет света»;

б) параллельное включение фототранзисторов BL1, 5L2 увеличивает световую чувствительность. Фототранзисторы выполняют логическую функцию «ИЛИ» для сигналов от разных источников света. Конденсатор С/ снижает импульсные помехи. Запараллеленных фототранзисторов может быть больше, чем два;

в) фотоприёмник импульсных и модулированных световых сигналов. На медленные изменения освешённости устройство не реагирует из-за разделительного конденсатора С/. Вместо резистора можно использовать внутренний «pull-up» резистор МК;

г) фототранзистор BLI включается по схеме эмиттерного повторителя. Конденсатор С/ снижает импульсные «световые» помехи и мошные электрические наводки, которые могут «просачиваться» на вход МК, когда фототранзистор находится в закрытом состоянии;

д) втрёхвыводном фототранзисторе BLI отвод базы используется для организации обратной связи через транзистор VTI. Фильтр RI, С1 блокирует сигналы светового потока с частотой модуляцией ниже 100 Гц (для устранения срабатывания датчика от «мерцания» ламп накаливания);

е) конденсатор С/ и транзистор VT1 организуют «световой ФВЧ» для подавления сигналов светового потока с частотой модуляции ниже 80 Гц. Это препятствует прохождению на вход МК помех, вызванных «мерцанием» ламп накаливания сети 50 Гц.

а) входной узел «светового пистолета» от игровой видеоприставки «Dendy». Фототранзистор BL1 направляется на экран телевизора. Резистором /?2 регулируют дальность приёма;

б) полевой транзистор VTI осуществляет согласование сопротивлений RI и R2\

в) двухкаскадный усилитель на транзисторах разной проводимости КГ/, КТ’2 обеспечивает повышенную чувствительность фотодатчика ВИ\

г) улучшенный вариант фотодатчика для «светового пистолета» с авто подстрой кой под разную яркость фона. Элементы VTI, R1, R2, образуют динамический стабилизатор тока;

д) резистором R2 побирается такое положение, чтобы транзистор VTI был открыт при отсутствии освещения фототранзистора BLL Конденсатор С1 фильтрует помехи;

е) триггер Шмитта на полевых транзисторах VTI, КТ’2 определяет порог срабатывания фотодатчика BL1. Конденсатор С1 устраняет импульсные «световые» помехи;

ж) диоды VD1, повышают помехоустойчивость усилителя на транзисторе VTI\0

з) трёхкаскадный усилитель на транзисторах КГ/… с визуальной индикацией приёма посылок от инфракрасного датчика ^L/ светодиодом HL1.

Рис. 3.50. Схемы подключения фототранзисторов к МК через усилители на микросхемах:

а) фототранзисторный датчик BLI с интегральным компаратором DAI wc широким диапазоном регулирования параметров при помощи двух переменных резисторов R2, R3\

б) триггер Шмитта на логической микросхеме DZ)/улучшает помехоустойчивость и увеличивает крутизну фронтов сигналов, поступающих от фоготранзистора ВИ\

в) фототранзистор ^L/для повышения точности срабатывания подключается к внешнему интегральному компаратору DA1. Конденсатор С/ увеличивает крутизну фронтов сигналов;

г) полосовой фильтр на микросхеме тонального декодера DA / (фирма National Semiconductor) обрабатывает им пул ьсно-модулированные световые сигналы, принимаемые фототранзистором BLI. Центральная частота фильтра определяется по формуле /^„[кГц] = 1 / (/?2[кОм]-С4[мкФ]). Полоса пропускания фильтра обратно пропорциональна ёмкости конденсатора С2. Резистором /?/устанавливается оптимальный уровень входного сигнала для DAI в диапазоне 100…200 мВ.

Пример подключения фоторезистора для управления светодиодом

Данный пример демонстрирует подключение фоторезистора для управления светодиодом, для создания аналога ночника. Сопротивление фоторезистора зависит от интенсивности падающего на него света,поэтому при уменьшении освещенности светодиод будет гореть ярко,а при ярком свете отключаться.

Необходимые компоненты

  • Макетная плата;
  • Резистор на 220 Ом ;
  • Резистор на 10 кОм ;
  • Фоторезистор с номинальным сопротивлением 200кОм ;
  • Один красный светодиод;
  • Провода-перемычки;

Схема

Соедините 9 -ый цифровой вывод Arduino с одним из выводов 220 Ом -ного резистора, другой вывод этого резистора соедините с анодом светодиода(длинная ножка), а катод светодиода с землей(контакт GND на плате Arduino). Контакт 5V платы Arduino соедините с одним из выводов фоторезистора, а другой вывод соедините с 0 -ым аналоговым контактом Arduino и с одним из выводов 10кОм -го резистора, другой вывод резистора соедините с землей(контакт GND на плате Arduino).

Резистивный делитель напряжения состоит из двух резисторов, от соотношения сопротивлений зависит выходное напряжение. В данном примере один из резисторов переменный(фоторезистор, на номинальное сопротивление в 200кОм , т.е при полной темноте сопротивление фоторезистора будет равно номинальному,а при ярком свете падать почти до нуля), поэтому мы можем получить изменение напряжения. Другой резистор определяет чувствительность. Если использовать подстроечный резистор, то можно сделать настраиваемую чувствительность.

От того где расположен фоторезистор и номинал постоянного резистора в схеме делителя напряжения зависит масштаб и точность показаний. Измените схему и посмотрите через монитор порта(для этого можете загрузить код из раздела "Код для корректировки параметров" , расположенный ниже) как меняются показания.

В мониторе порта в первом и во втором случае вы увидите, что не получите весь диапазон значений(от 0 до 1023), потому что сопротивление фоторезистора никогда не будет равно нулю. Но вы сможете определить минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности(значения зависят от условий освещенности, значения постоянного резистора и характеристик фоторезистора), для построения нашего "ночника".

Код

Загрузите скетч, показанный ниже, в плату Arduino .

    #define RLED 9 //Красный светодиод подключаем к 9-му цифровому контакту с поддержкой ШИМ

  1. int val = 0 ; //Переменная для хранения считываемого значения с датчика

  2. void setup()

    pinMode(RLED, OUTPUT) ; //Устанавливаем 9 вывод как выход

  3. void loop()

    val = analogRead(LIGHT) ; //считываем значение с аналогового входа

    val = map(val, MIN_LIGHT, MAX_LIGHT, 255 , 0 ) ; //преобразуем диапазон считываемых значений

    val = constrain(val, 0 , 255 ) ; //"определяем" области допустимых значений

    analogWrite(RLED, val) ; //управляем светодиодом

  • Примечание: В данном примере используется фоторезистор с номинальным сопротивлением в 200кОм . Если у вас фоторезистор на другой номинал, возможно вам придется изменить минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности.

Код для корректировки параметров

Если у вас фоторезистор на другой номинал возможно вам придется подкорректировать минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности. Для этого добавьте две строчки кода(выделены цветом). И определите минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности, перекрывая(и наоборот открывая) рукой доступ к свету для фоторезистора и наблюдая за изменениями значений с помощью монитора последовательного порта. После корректировки вы можете закомментировать добавленные строчки кода.

    #define RLED 9 //Красный светодиод подключаем к 9-му цифровым контактом с поддержкой ШИМ

    #define LIGHT 0 //Фоторезистор подключаем к 0-му аналоговому контакту

    #define MIN_LIGHT 200 //Минимальное значение освещенности

    #define MAX_LIGHT 900 //Максимальное значение освещенности