Отопление с помощью теплового насоса. Тепловой насос в отоплении дома. Тепловой насос. Правда о его эффективности


Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.


2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома - вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен - электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент - не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации - использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.

Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) - тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети).

Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы - с помощью такого теплового насоса можно заодно получить горячую воду в доме.

Но самым интересной выглядит категория тепловых насосов класса «воздух - воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим - 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это - «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению - для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома - в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) - установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше - в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает - переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ - температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.

Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.

Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.

При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.
При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.
При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.
При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.

Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре - 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?
Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.
В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.
Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.
В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается.
Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент - кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.

Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент - как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов - японцы).

Электрическое отопление:
Электрический котел - 50 тыс рублей
Трубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:
Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей.
Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.

Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей.

Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!

Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то.

Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них - обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте - производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени -

Сегодня весь цивилизованный мир борется за экономию энергоресурсов. Конечно, вечный двигатель пока создать никому не удалось, но практически постоянный источник теплоснабжения уже найден. Это – окружающая нас среда:

  • атмосфера;
  • почва;
  • грунтовые воды;
  • естественные водоемы.

Остается только вопрос: каким образом можно аккумулировать тепло из внешней среды и направить его на внутренние потребности?

Для этих целей используется такой агрегат, как тепловой насос. Фактически многие из технически образованных людей его уже знают – он реализован в любой современной холодильной либо климатической системе.

Причем в этот агрегат работает самым непосредственным образом: в режиме обогрева они аккумулируют внешнее атмосферное тепло, передавая его на внутренние теплопередающие устройства – вентилируемые радиаторы.

Сразу следует оговориться, что посредством такого аппарата эффективным будет отопление любых изолированных пространств при температуре источника тепла, превышающей один градус по Цельсию .


Принцип действия этого агрегата основоположен на законе Карно . Он основан на аккумуляции низкопотенциальной тепловой энергии хладагентом с последующей передачей ее потребителю .

  1. Хладагент, имеющий более низкую температуру, нагревается от внешних источников – грунта, глубинных скважин, естественных водоемов, при этом переходя в газообразное агрегатное состояние.
  2. Он принудительно сжимается компрессором, при этом нагреваясь еще больше , и вновь обретает жидкое состояние, высвобождая при том всю накопленную тепловую энергию в радиаторах отопления.
  3. Цикл повторяется – жидкий хладагент вновь попадает во внешний контур системы, где, испаряясь, заряжается тепловой энергией от внешних источников тепла.

При этом расходуется только электроэнергия, необходимая для сжатия и циркуляции в системе хладагента, то есть, обогрев внутренних помещений осуществляется максимально экономичным способом.

Виды тепловых насосов

Существует три основные модификации тепловых насосов:

      • «вода – вода»;
      • «грунт – вода»;
      • «воздух – вода».

Теплогенераторы класса «вода – вода»

Сегодня теплонасосные агрегаты широко применяются в высокоразвитых странах Европы. Например, в Нидерландах посредством этого теплообменного устройства отапливаются целые коттеджные поселки , поскольку там имеется изобилие геотермальных шахт, заполненных водой с постоянной температурой в 32 градуса по Цельсию. А это практически дармовой источник тепла.

Подобная вариация теплогенерирующего
оборудования называется «вода – вода». К этой категории относятся любые типы тепловых систем, использующих в качестве источников тепловой энергии жидкие среды .

Обычно этот принцип действия реализуется следующим образом:

  • теплая вода из скважины подается к внешнему , после чего она сбрасывается в другую скважину либо в близлежащий водоем.
  • радиатор монтируется на дне незамерзающего водоема . Исполняется он из нержавеющей либо металлопластиковой трубы. Причем для экономии дорогостоящего хладагента – фреона – зачастую применяется промежуточный контур теплоносителя, заполненный «незамерзайкой» - тосолом либо раствором гликоля (антифризом).

Стоимость агрегатов типа «вода – вода» варьируется в значительных пределах и зависит, в первую очередь, от мощности теплогенерации и страны-производителя.

Так, самый маломощный агрегат российского производства , способный развивать тепловую мощность порядка 6 кВт, обойдется в сумму почти 2000 долларов , а промышленноe двухкомпрессорное оборудование мощностью более 100 кВт, будет стоить уже почти тридцать тысяч долларов США .

Агрегаты класса «воздух – вода»


При использовании в качестве источника тепловой энергии атмосферы либо солнечных лучей
тепловой насос считается класса «воздух – вода». В этом случае на внешний теплообменник зачастую устанавливается циркуляционный вентилятор, дополнительно нагнетающий теплый внешний воздух.

Стоимость 18-киловаттного воздушного теплового аппарата этого класса российского производства начинается с отметки в 5000 долларов США , а за двенадцатикиловаттное оборудование японской компании Fujitsu потребителю придется выложить уже почти 9 тысяч долларов США.

Оборудование класса «грунт – вода»

Существует также вариация, использующая в качестве источника тепловой энергии потенциал, накопленный в грунте .
Возможны два типа подобных конструкций: вертикальная и горизонтальная.

  • Вертикальная — компоновка теплосборного коллектора линейная. Вся система размещается в вертикальных траншеях, глубина которых составляет 20…100 метров .
  • Горизонтальная — компоновки внешнего коллектора, обычно металлопластиковые спирально свитые трубы, укладываются в 2…4-метровые горизонтальные траншеи . Причем в этом случае, чем больше глубина залегания внешнего теплоприемника, тем лучше работает отопление «из земли» .

Цена на агрегаты класса «грунт – вода» сравнима с оборудованием аналогичной мощности класса «вода – вода» и начинается с отметки в две тысячи долларов США за шестикиловаттный насос .

Плюсы и минусы отопительной системы, основанной на тепловом насосе

К положительным свойствам тепловых насосов можно отнести:

Отзыв: В прошлом году приобрел тепловой насос моноблок системы «воздух — вода» для отопления загородного дома. Дорого, конечно, но надеюсь, лет за 10 окупится. Поставщик сам установил насос и подключил к системе отопления, все работает практически без моего участия. Выбором доволен.

К недостаткам теплового насоса относят:

  • Высокую стоимость монтажа . Для нормальной работы теплового оборудования необходимо приложить значительные усилия – вырыть траншеи большой продолжительности, проложить глубокие скважины либо преодолеть зачастую значительные расстояния до ближайшего водоема.
  • Необходимость качественной реализации системы . Малейшая утечка хладагента либо промежуточного теплоносителя способна свести на нет все старания. Поэтому при закладке схемы любой вариации необходимо использовать труд исключительно квалифицированных специалистов и в процессе эксплуатации системы исключить риск ее разгерметизации.

Тепловой насос своими руками. Сборка и установка

Конечно, первичные вложения на организацию отопления дома согласно этой технологии весьма высоки. Поэтому у многих обывателей, заинтересовавшихся этой сверхэконмичной системой, возникает желание хоть немного сэкономить, соорудив ее самостоятельно.

Для этого нужно:

  • Приобрести компрессор . Подойдет любой работоспособный агрегат от бытовой сплит-системы кондиционирования.
  • Соорудить конденсатор . В самом простом случае в качестве оного может выступать обычный бак из нержавейки, объем которого составляет 100 литров . Он разрезается напополам, внутри его монтируется змеевик из медной трубы малого диаметра. Толщина стенки змеевика должна быть не ниже одного миллиметра. После раскрепления змеевика необходимо обратно сварить бак в целостную конструкцию, соблюдая условия герметичности.
  • Собрать испаритель . Это может быть и пластиковая 60–80-литровая емкость с вмонтированной в нее трубой на ¾ дюйма.
  • Для организации внешнего контура, расположенного в грунте, лучше использовать современные – они намного более долговечные, нежели классические металлические и монтаж их гораздо надежнее и быстрее.

Осталось только пригласить мастера по холодильному оборудованию, чтобы он, используя специализированную оснастку, качественно загерметизировал все стыки системы и заправил ее фреоном.

Смотрите видео о монтаже теплового насоса Daikin Altherma:

На этом монтаж теплогенерирующей установки заканчивается. Можно пользоваться всеми ее преимуществами, главным из которых является низкое потребление энергоресурса – электроэнергии при значительной мощности теплогенерации.

На чтение 7 мин.

Под понятием тепловой насос подразумевается совокупность агрегатов, предназначенных для накопления энергии тепла от различных источников в окружающей среде и передача этой энергии потребителям.

Для примера, подобными источниками могут быть стояки канализации, отходы различных крупных производств, выделяемое при работе тепло от различных электростанций и т.д. В итоге, источником могут выступать различные среды и тела, имеющие температуру более одного градуса.

Задача теплового насоса — преобразовать естественную энергию воды, земли или воздуха в тепловую энергию для нужд потребителя. Так как данные виды энергии постоянно самовосстанавливаются, то можно считать их безграничным источником.

Тепловой насос для отопления дома принцип работы

Принцип работы тепловых насосов основан на возможности тел и сред отдавать свою тепловую энергию другим таким же телам и средам. По этой особенности различают различные виды тепловых насосов, в которых обязательно присутствуют поставщик энергии и её получатель.

В названии насоса на первом месте указывается источник тепловой энергии, а на втором тип носителя, которому передаётся энергия.


В конструкции каждого теплового насоса отопления дома выделяют 4 основных элемента:

  1. Компрессор, предназначенный для увеличения давления и температуры пара, возникающего вследствие кипения фреона.
  2. Испаритель, представляющий из себя бак, в котором фреон из жидкого состояния переходит в газообразное.
  3. В конденсаторе хладагент передаёт тепловую энергию внутреннему контуру.
  4. Посредством дроссельного клапана регулируется количество хладагента, поступающего в испаритель.

Тип теплового насоса воздух воздух обозначает, что тепловая энергия будет браться из внешней среды (атмосферы) и передаваться носителю, так же воздуху.


Тепловой насос воздух воздух: принцип работы

Принцип действия данной системы основан на следующем физическом явлении: среда в жидком состоянии, испаряясь, понижает температуру поверхности, откуда происходит её рассеивание.

Для наглядности кратко рассмотрим схему работы морозильной камеры холодильника. Фреон, циркулирующий по трубкам холодильника, забирает тепло из холодильника и сам при этом нагревается. В последствие собранное им тепло передаётся во внешнюю среду (то есть в помещение в котором расположен холодильник). Затем хладагент, сжимаясь в компрессоре, снова остывает и круговорот продолжается. Воздушный тепловой насос работает по тому же принципу — забирает тепло из уличного воздуха и обогревает дом.

Конструкция агрегата состоит из следующих частей:

  • Внешний блок насоса представляют компрессор, испаритель с вентилятором и расширительный клапан.
  • Теплоизолированные медные трубки служат для циркуляции фреона
  • Конденсатор, с расположенным на нём вентилятором. Служит для рассеивания уже нагретого воздуха по площади помещений.

При работе воздушного теплового насоса при обогреве дома в определённом порядке происходят следующие процессы:

  • Посредством вентилятора воздух с улицы втягивается в устройство и проходит через внешний испаритель. Фреон, совершающий круговорот в системе, собирает всю энергию тепла из уличного воздуха. В следствие этого из жидкого состояния он переходит в газообразное.
  • В дальнейшем газообразный фреон сжимается в конденсаторе и переходит во внутренний блок.
  • Затем газ переходит в жидкое состояние, при этом отдавая накопленное тепло воздуху комнаты. Этот процесс происходит в конденсаторе расположенном в помещении.
  • Переизбыток давления уходит через расширительный клапан, а фреон в жидком состоянии уходит на новый круг.

Фреон постоянно будет забирать тепловую энергию из уличного воздуха, так как его температура всегда будет меньше. Исключением является тот случай, когда на улице сильные морозы. В таких условиях эффективность теплового насоса будет уменьшаться.

Для повышения мощности агрегата максимально увеличивают поверхности конденсатора и испарителя.

Как и у каждого сложного прибора у воздушного теплового насоса есть свои плюсы и минусы. Из плюсов стоит выделить:

1. В зависимости от потребности агрегат может повышать или понижать температуру обогрева дома.
2. Насос данного типа не засоряет окружающую среду вредными продуктами сгорания топлива.
3. Устройство легко устанавливается.
4. Воздушный насос абсолютно безопасен в плане возникновения пожара.
5. Коэффициент отдачи тепла насосом очень высок по сравнению с энергозатратами (на 1 кВт затраченной электроэнергии приходится от 4 до 5 кВт выделяемого тепла)
6. Отличаются доступной ценой.
7. Устройство удобно при использовании.
8. Система управляется автоматически.

Из минусов воздушной системы стоит упомянуть:

1. Небольшой шум, создаваемый при работе устройства.
2. Эффективность прибора зависит от температуры окружающей среды.
3. При низких уличных температурах возрастает потребление электричества. (ниже -10 градусов)
4. Система целиком зависит от наличия электричества. Проблема может быть решена установкой автономного генератора.
5. Воздушным насосом нельзя нагреть воду.

В целом приборы класса воздух-воздух идеально подойдут для обогрева деревянных домов, у которых, вследствие особенности материала, снижены естественные потери тепла.

Перед выбором воздушного насоса стоит выяснить следующие ключевые моменты:

  • Показатель теплоизоляции помещений.
  • Квадратуру всех комнат
  • Число людей, живущих в частном доме
  • Условия климата

В большинстве случаев на 10 кв. м. помещения должно приходится около 0,7 кВт мощности устройства.

Тепловые насосы для отопления дома вода вода.

При обустройстве отопительной системы в частном доме хорошо подойдут системы класса вода-вода. Помимо этого они смогут обеспечить жилище горячей водой. В качестве источников природного тепла подойдут различные водоёмы, подземные воды и т.д.


В основу работы насоса вода вода положен закон о том, что изменении агрегатного состояния (из жидкости в газ и наоборот) вещества, под воздействием различных факторов влечёт за собой высвобождение или поглощение энергии тепла.

Подобный тип насосов можно использовать для отопления дома даже при низких температурах окружающей среды, так как в глубоких слоях земли всё равно сохраняется плюсовая температура.


Принцип работы теплового насоса вода вода следующий:

  • Специальный насос гонит воду по медным трубкам системы из внешнего источника в установку.
  • В приборе вода из окружающей среды воздействует на хладагент (фреон), температура кипения которого от +2 до +3 градусов. Часть энергии тепла воды передаётся фреону.
  • Компрессор всасывает газообразный хладагент и сжимает его. В результате этого процесса температура хладагента ещё больше возрастает.
  • Затем фреон направляется в конденсатор, где и нагревает воду до необходимой температуры (40-80 градусов). Нагретая вода поступает в трубопровод отопительной системы. Здесь фреон возвращается в жидкое состояние и цикл начинается заново.

Стоит отметить, что приборы вода-вода используются для отопления дома площадью 50-150 кв.м.


Тепловой насос вода вода: принцип работы

При выборе устройства данного класса стоит обратить внимание на определённые условия:

  • В качестве источника энергии предпочтение следует отдать открытым водоёмам (легче монтаж труб), на расстоянии не более 100 м. К тому же глубина водоёма для более северных районов должна быть не менее 3 метров (на такой глубине вода обычно не промерзает). Трубы, подводимые к воде должны быть утеплены.
  • Жёсткость воды сильно влияет на работу насоса. Не каждая модель способна функционировать при высоких показателях жёсткости. Вследствие этого до приобретения устройства берётся проба воды и исходя из полученных результатов подбирается насос.
  • По типу работы агрегаты делятся на моновалентные и бивалентные. Первые отлично справятся с ролью основного источника тепла (вследствие своей большой мощности). Вторые могут выступать дополнительным источником обогрева.
  • С мощностью насоса возрастает его кпд, но в то же время и увеличивается потребление электричества.
  • Дополнительные возможности прибора. Например: корпус с шумоизоляцией, функция нагрева воды для бытовых нужд, автоматическое управление и др.
  • Для расчёта необходимой мощности прибора нужно общую площадь помещений умножить на 0,07 кВт (показатель энергии на 1 кв.м.). Эта формула действительна для стандартных помещений, с высотой не более 2,7 м.
  • Принцип работы тепловых насосов
  • Отопительный контур
  • Достоинства и недостатки тепловых насосов
  • Секреты самоделкиных

Как это работает

Тепловой или геотермальный насос собирает тепловую энергию из окружающей среды, преобразовывает ее, с использованием хладагента, и подает в домашнюю систему отопления.

Основные узлы агрегата: компрессор, теплообменник, циркуляционный насос, автоматика, подающий контур. Насос способен забирать тепло из трех источников.

  • Воздух.
  • Вода.
  • Грунт.

Судя по веткам обсуждений, востребованы у нас два варианта – вода и грунт. Это обусловлено ограничениями по температуре – источник должен быть плюсовым. Расположение запитывающего контура бывает горизонтальным или вертикальным. В первом случае магистраль укладывают ниже уровня промерзания – от 1,5 метров глубины. Или на дно водоема, там даже по сильным морозам – до + 4⁰С. Длина контура зависит от габаритов отапливаемого помещения и мощности насоса. Во втором бурят скважины под зонды, средняя глубина – 50–70 метров. Пиастров А В , один из форумчан и владелец теплового насоса, так охарактеризовал вертикальную систему.

Пиастров А В Участник FORUMHOUSE

Тепло собирают геотермические зонды – закольцованный трубопровод, по которому циркулирует этиленгликоль. Они опускаются в скважины 50–70 метров глубины. Это наружный контур, а количество скважин зависит от мощности теплового насоса. Для домика в 100 метров квадратурой потребуется два зонда – две скважины.

Отопительный контур

Тепловой насос, в отличие от котлов на газу, угле или электричестве, нагревает носитель в среднем до 40⁰C. Это оптимальная температура, при которой и износ оборудования минимальный, и потребление электричества. Для обычных радиаторов таких показателей недостаточно. Поэтому с тепловым насосом обычно используют не трубы и батареи, а теплый пол. Он при таком нагреве теплоносителя эффективнее. Только шаг между трубами должен быть меньше. Стоит учесть, что теплый пол создает ограничения по выбору мебели и сушит воздух. Потребуется дополнительное увлажнение. Летом полы могут работать на охлаждение.

Достоинства и недостатки

Главное достоинство теплового насоса – высокая отдача, на каждый киловатт потребленного электричества он дает около 5 кВт тепла. Плюс никаких физических усилий в процессе работы, никаких отходов и угарных газов.

Кроме того, нет зависимости от газовщиков и хождений по инстанциям для согласования. Да и требования к котельной не такие строгие. После пуска затраты на эксплуатацию минимальные. Оплачивается только электричество, насос средней мощности потребляет около 4 кВт в час. Современные модели импульсные, работают не беспрерывно, а включаются при необходимости. Это снижает количество рабочих часов в сезон и затраты энергии.

Главный недостаток геотермального отопления – цена вопроса, даже китайский или отечественный агрегат, не говоря о европейских брендах, стоит несколько тысяч евро. Вместе с обустройством внешнего контура и монтажом, удовольствие выльется в сотни тысяч рублей. Согласно расчетам экспертов и владельцев, насос окупается за несколько лет. Работает он на дармовом источнике, по сравнению со стоимостью тонны угля или куба дров, экономия значительная. Но далеко не у каждого есть лишних полмиллиона на оборудование и пусконаладку.

Если недалеко от участка водоем, получается значительно дешевле, отпадают траты на дорогостоящее бурение.

Действующие скважины тоже оптимизируют процесс, становясь источником тепла. Это подтверждает форумчанин дет марос из Усть-Каменогорска. Он работает на предприятии, выпускающем тепловые насосы и оказывающем услуги по их установке. Поэтому досконально разбирается в ситуации и на вопрос участника ветки, нужны ли ему зонды, если на участке есть скважины, ответил исчерпывающе.

дет марос Участник FORUMHOUSE

Зачем вам заморачиваться с зондами, если воды хватает. Будете гонять из одной скважины в другую через ТН. С зондами возимся, когда на участке нет воды или столб маленький, потребности не покрывает. Для насоса мощностью 10 кВт нужен объем в 3 куба.

Секреты самоделкиных

Но самая большая экономия получается, когда тепловой насос собирают своими руками. Ведущий узел – компрессор, берут от мощных кондиционеров и сплит-систем, технические параметры у них сходные. Теплообменники продаются готовые, но некоторые умельцы и их умудряются паять из медных труб. В качестве хладагента – фреон, его тоже продают в баллонах. Контроллеры, реле, стабилизаторы, все элементы по отдельности обойдутся вполовину дешевле, чем в готовом комплекте.

Чаще всего самоделки организуют над прудами или когда уже есть действующая скважина. Из-за того, что львиная доля расходов приходится именно на земляные работы, и экономия максимальная на них же.

Умелец aparat2 , из Риги, сам собрал геотермальное и выложил об этом фоторепортаж, с подробным описанием всех операций.

aparat2 Участник FORUMHOUSE

Собрал ТН из двух однофазных компрессоров по 24000 БТУ (7 кв. ч. по холоду). Получился каскад, тепловой мощностью 16-18 киловатт, при расходе электричества около 4,5 кВт в час. Выбрал два компрессора, чтобы были токи меньше, запускать буду не одновременно. А пока обжит только второй этаж и хватит одного компрессора. Да и, поэкспериментировав на одном, потом усовершенствую вторую конструкцию.

Также форумчанин решил не тратиться на готовые теплообменники пластинчатого типа. Они требовательны к водоподготовке, да и стоят весомо. Самодельный обменник он совместил с аккумулятором, чтобы повысить отдачу. Получилась рабочая установка в разы дешевле покупной.

Тем не менее, тепловые насосы– это альтернативный вариант, когда нет газа и большие площади отопления. Даже при самостоятельной сборке системы затраты на комплектующие солидные. Ближе изучить тему можно на ветке по , там масса полезных советов, форумчане делятся опытом, обсуждают различные модели. поможет разобраться со сборкой. А варианты отопления большого дома без газа в ролике – наглядный пример. Для владельцев деревянных домов – видео

Мировой энергетический комитет составил прогноз использования источников тепла для обогрева зданий на 2020 год. В нем утверждается, что в развитых странах 75% домов будут получать горячее водоснабжение и отапливаться геотермальной энергией нашей планеты.

На сегодняшний день 40% всех новых домов Швейцарии оборудованы тепловыми насосами, а в Швеции этот показатель доведен до 90%. Россия и страны СНГ меньше внедряют тепловой насос для отопления дома, хотя первые энтузиасты уже пользуются этим методом, передавая свой опыт последователям.

Принципы работы

Для обогрева здания используется перенос энергии источника низкого потенциала (температуры) теплоносителем к потребителю. В технологическом процессе используется закон термодинамики, обеспечивающий выравнивание тепловых энергий двух систем с разными температурами: передача мощности горячего источника холодному потребителю.

При использовании тепла окружающей среды осуществляется повышение его температурного потенциала для обогрева и горячего водоснабжения.

Источником регенеративного тепла могут быть:

  • поверхность земли или ее объем;
  • водная среда (озеро, река);
  • воздушные массы.

Более популярны модели, забирающие энергию от земли, поверхность которой обогревается солнечными лучами и энергией внешнего и внутреннего ядра планеты. Они отмечаются:

  1. лучшим сочетанием потребительских качеств;
  2. эффективностью;
  3. ценой.

Схемы циркуляции теплоносителей

При работе теплового насоса (ТН) используется три замкнутых контура, по которым циркулируют различные жидкости/газы - теплоносители. Каждый из них выполняет свои функции.

Контур съема потенциала энергии источника

При заборе тепла воздуха используется искусственный обдув корпуса испарителя воздушными потоками от вентиляторов.

Замкнутый цикл жидкого теплоносителя для передачи тепла водной среды или земли осуществляется по трубопроводам, которые соединяют змеевик испарителя с коллектором, утопленным на дно водоема либо заглубленным в землю на расстояние, превышающее промерзание грунта в сильные холода.

В качестве теплоносителя применяются незамерзающие жидкости на основе разбавленных водных растворов спирта. Их принято называть «антифризы» или «рассолы». Они под влиянием более высокой температуры (≥+3ºС) поднимаются к испарителю, передают ему тепло, а после охлаждения (≈-3ºС) самотеком направляются назад к источнику энергии, обеспечивая непрерывную циркуляцию.

Внутренний контур

По нему циркулирует хладагент на основе фреона, «поднимая» тепло на более высокий уровень. Под действием температуры он последовательно переходит в газообразное и жидкостное состояние.

В состав внутреннего контура входят:

  • испаритель, забирающий энергию от рассолов и передающий ее фреону, который при этом закипает и становится разреженным газом;
  • компрессор, сжимающий газ до высокого давления. При этом резко увеличивается температура фреона;
  • конденсатор, в котором горячий газ передает свою энергию теплоносителю выходного контура, а сам остывает, переходя в жидкое состояние;
  • дроссель (расширительный клапан), редуцирующий фреон за счет перепада давления до состояния насыщенного пара для поступления в испаритель. При прохождении хладагента через узкое отверстие давление теплоносителя падает до начального значения.

Выходной контур

Здесь циркулирует вода. Она обогревается в змеевике конденсатора для использования в обычной жидкостной системе отопления. При этом способе ее температура достигает порядка 35ºС, что обусловливает ее применение в системе «Теплый пол» с длинными магистралями, позволяющими равномерно передавать генерируемую энергию всему объему помещения.

Использование только радиаторов отопления , создающих меньшие объемы теплообмена с пространством комнат, не так эффективно.

Конструктивное исполнение

Промышленность выпускает различные по эксплуатационным характеристикам модели, но они имеют в своем составе оборудование, выполняющее типовые задачи, описанные выше.

Как вариант конструктивного исполнения на рисунке представлен тепловой насос для отопления дома.

Здесь по входным трубопроводам принимается тепло от геотермальных источников, а по выходным - передается в систему обогрева дома.

Работа теплового насоса обеспечивается:

  • системой контроля параметров схемы и управления, включая дистанционные способы через интернет;
  • дополнительным оборудованием (узлы промывки и заполнения, расширительные баки, группы безопасности, насосные станции).

Грунтовые конструкции

Они используют три схемы устройства теплообменников для забора энергии от источника:

  1. поверхностное расположение;
  2. установка вертикальных грунтовых зондов;
  3. заглубление горизонтальных конструкций.

Первый метод наименее эффективен. Поэтому он редко применяется для отопления дома.

Установка зондов в скважинах

Этот способ наиболее эффективен. Он предусматривает создание скважин на глубины порядка 50÷150 метров и больше для размещения U-образного трубопровода из пластиковых материалов с диаметром от 25 до 40 мм.

Увеличение площади поперечного сечения трубы, как и углубление скважины, создает улучшенный теплосъем, но удорожает конструкцию.

Горизонтальные коллекторы

Бурение скважин для зондов стоит дорого. Поэтому часто выбирается этот способ, как более дешевый. Он позволяет обойтись рытьем траншей ниже глубины промерзания почвы.

В проекте горизонтального коллектора следует учитывать:

  1. теплопроводность грунта;
  2. среднюю влажность почвы;
  3. геометрию участка.

Они влияют на габариты и конфигурацию коллектора. Трубы могут укладываться:

  • петлями;
  • зигзагами;
  • змейкой;
  • плоскими геометрическими фигурами;
  • винтовыми спиралями.

Важно понимать, что площадь участка, отводимого под такой коллектор, обычно превышает габариты фундамента дома в 2÷3 раза. Это основной недостаток такого метода.

Водные коллекторы

Это наиболее экономичный способ, но он требует расположения около здания глубокого водоема. На его дне размещают и закрепляют грузами собранные трубопроводы. Для эффективной работы теплового насоса требуется просчитать минимальную глубину закладки коллектора и объем водоема, способного обеспечить теплосъем.

Габариты такой конструкции определяются проведением тепловых расчетов и могут достигать протяженности более 300 метров.

Рисунок ниже демонстрирует подготовку магистралей для сборки на льду весеннего озера. Он позволяет визуально оценить масштабы предстоящей работы.

Воздушный метод

Внешний или встроенный вентилятор нагнетает воздух с улицы прямо на испаритель с фреоном, как в кондиционере. При этом не требуется создавать громоздкие конструкции из труб и помещать их в грунт или водоем.

Тепловой насос для отопления дома, работающий по такому принципу, стоит дешевле, но использовать его рекомендуется в относительно теплом климате: морозный воздух не позволит работать системе.

Подобные устройства нашли широкое применение для обогрева воды в бассейнах или помещений, расположенных рядом с промышленными устройствами, постоянно участвующими в технологическом процессе и выделяющими в атмосферу тепло мощными системами охлаждения. В качестве примера можно привести силовые автотрансформаторы энергетики, дизельные станции, котельные.

Основные характеристики

При выборе модели ТН следует учитывать:

  • выходную тепловую мощность;
  • коэффициент трансформации тепловых насосов;
  • условный кпд;
  • годовую эффективность и издержки.

Выходная мощность

При создании нового проекта дома учитывают его потребности в тепле с учетом конструктивных особенностей материалов, создающих теплопотери через стены, окна, двери, потолок и пол помещений различных габаритов. Расчет учитывает создание комфорта при самых низких морозах в конкретной местности.

Потребляемая тепловая мощность здания выражается в кВт. Она должна покрываться вырабатываемой энергией теплового насоса. Однако часто при расчетах делают упрощение, позволяющее экономить: длительность самых холодных дней в течение года не превышает нескольких недель. На этот период подключается дополнительный источник тепла, например, ТЭНы, подогревающие воду в котле.
Они работают только в критических ситуациях при морозах, а в остальное время отключены. Это позволяет использовать ТН с меньшими мощностями.

Возможности конструкций

Для справки. Модели выходной мощности 6÷11 кВт «рассольно-водяных» схем способны нагревать воду встроенных баков в относительно небольших постройках. Мощность в 17 кВт достаточна для поддержания температуры воды 65ºС у котла с емкостью 230÷440 литров.
Потребности в тепле средних по величине зданий покрывают мощности 22÷60 кВт.

Коэффициент трансформации тепловых насосов Ктр

Он определяет эффективность конструкции по безразмерной формуле:

Kтр=(Твых-Твх)/Твых

Величина «Т» обозначает температуру теплоносителей на выходе и входе в конструкцию.

Коэффициент преобразования энергии (ͼ)

Его рассчитывают для определения доли полезной мощности тепла по отношению к приложенной энергии на компрессор.

ͼ=0,5Т/(Т-То)=0,5(ΔТ+То)/ΔТ

Для этой формулы температура потребителя «Т» и источника «То» определяется в градусах Кельвина.

Величину ͼ можно определить по количеству затраченной энергии на работу компрессора «Рэл» и полученной полезной теплопроизводительности «Рн». В этом случае его называют «СОР» по сокращению от английского термина «Coefficient of perfomance».

Коэффициент ͼ - переменная величина, зависимая от перепада температур между источником и потребителем. Он обозначается цифрами от 1 до 7.

Условный КПД

Это неверное утверждение: коэффициент полезного действия учитывает потери мощности при работе конечного устройства.
Для его определения надо выходную тепловую мощность разделить на приложенную с учетом энергии геотермальных источников. При таком расчете вечного двигателя не получится.

Годовая эффективность и издержки

Коэффициент СОР оценивает работу теплового насоса в определенный момент времени при конкретных условиях эксплуатации. Чтобы проанализировать работу ТН, введен показатель эффективности системы за год (β).

Здесь символ Qwp обозначает величину тепловой энергии, произведенной за год, а Wel - значение потребленного электричества установкой за то же время.

Показатель издержек Eq

Эта характеристика обратна показателю эффективности.

Для определения характеристик ТН используется специализированное программное обеспечение и заводские стенды.

Отличительные черты

Преимущества

Отопление дома тепловым насосом в сравнении с другими системами обладает:

  1. хорошими параметрами экологичности;
  2. большим сроком службы оборудования без технического обслуживания;
  3. возможностью простого переключения режима обогрева зимой на кондиционирование летом;
  4. высокой годовой эффективностью.

Недостатки

На стадии проекта и при эксплуатации приходится учитывать:

  1. сложность выполнения точных технических расчетов;
  2. высокую стоимость оборудования и монтажных работ;
  3. возможности образования «воздушных пробок» при нарушениях технологии укладки трубопроводов;
  4. ограниченную температуру воды на выходе из системы (≤+65ºС);
  5. строгую индивидуальность каждой конструкции для любого здания;
  6. потребность больших площадей для коллекторов с исключением строительства объектов на них.

Краткий перечень производителей

Современный тепловой насос для отопления дома выпускают такие компании, как:

  • Bosch - Германия;
  • Waterkotte - Германия;
  • WTT Group OY - Финляндия;
  • ClimateMaster - США;
  • ECONAR - США;
  • Dimplex - Ирландия;
  • FHP Manufacturing - США;
  • Gustrowr - Германия;
  • Heliotherm - Австрия;
  • IVT - Швеция;
  • LEBERG - Норвегия.