Блоки питания для усилителей низкой частоты. Импульсный блок питания унч. Схема выпрямителей и стабилизаторов напряжения

Когда-то звуковые усилители (УНЧ) были большими, с кучей ламп, огромными радиаторами для транзисторов, тяжелыми трансформаторами в БП. Но жизнь не стоит на месте. Теперь компактные микросхемы с цифровыми УНЧ заменили ламповых и транзисторных динозавров почти во всех устройствах широкого потребления. Можно без особых усилий сконструировать компактный усилитель, например на чипе PAM8610. Для питания использовался блок питания из обзора.

УНЧ на PAM8610 существует в нескольких вариантах, стоит совсем недорого. Купить можно например тут - . Было решено использовать готовую плату с регулятором громкости и распаянными разъемами. Существует еще ультрабютжетный вариант. Его обозревали тут на сайте - . Почему именно этот усилитель - цена и очень хорошие впечатления от младших моделей PAM8403/PAM8406: , .
Посмотрим, как проявит себя старшая модель усилителя.

Характеристики модуля:
Питание 7-15 В, рекомендуемое 12 В
Мощность до 10 Вт на канал при сопротивлении нагрузки 8 Ом
Защита от КЗ, перегрева
КПД усилителя до 90 %

Судя по описанию, отличные характеристики для такого малыша.

Фото:




Флюс немного не до конца отмыт.

Подключение динамиков никак не обозначено. Опытном путем и по аналогичной немного другой плате выяснено:


Штекер питания - центр "+", вокруг - "-"

Микросхема под радиатором у этого варианта усилителя - это хорошо. Перемычки на плате - одна временно откл звук (mute), вторая не знаю.

Для питания конструкции было решено использовать БП из ссылки в начале обзора. Это БП очень подробно обозревался . Блок питания хорошо работает в предельных режимах, компактный и недорогой. Теоретический можно получить с этим блоком питания суммарную мощность около 12 Ватт на два канала. Или реальных около 5 Ватт на канал. Меня данный блок питания и мощность УНЧ устраивали. Для большего усиления микросхемы при использовании источника сигнала в виде сотового телефона или ЦАП-а необходимо использовать предварительное усиление перед микросхемой, что мне делать не хотелось. Да и мощности в 5 Ватт на канал для моих целей достаточно. Но мы все равно протестируем микросхему УНЧ и БП в разных режимах и на нагрузке разного сопротивления.

Блок питания:


Для тестирования нагрузки используем мощные резисторы 4 Ома, 6 Ом, 8 Ом на 100 Ватт:


Купить их можно тут


Подключаем все модули и резисторы.

Проводим измерения.
Напряжение питания усилителя 12 В, на вход подается сигнал в 1000 Гц от звукового генератора. Мощность рассчитывается квадрат напряжения на выходе одного канала усилителя (измерения вольтметром переменного тока) при подключенной нагрузки делится сопротивление нагрузки

Первая группа тестов
Обычный источник (телефон или ЦАП (DAC)). Uвх=0.15 В. Тестирование проводилось на БП из обзора, без предварительного усиления. Во всех случаях защита от перегрева на микросхеме и по току на БП не срабатывала.


У меня колонки сопротивлением 4 Ома - первая строчка - мой режим использования усилителя.

Вторая группа тестов
Отключение БП из обзора по защите по току. Увеличиваем Uвх до срабатывания защиты на БП. Этот режим возможен при использовании предварительно усилителя (например, ) перед усилителем из обзора

Третья группа тестов
Предельный режим. Используется лабораторный БП. Тесты завершаются, если микросхема усилителя отключается от перегрева (температура микросхемы в этом случае больше 100 градусов Цельсия). В реальности для реализации этого режима необходим более мощный БП (12 В 2 А например) и предварительное усиление сигнала.


Думаю большую мощность, чем заявлена, удалось получить с помощью радиатора на микросхеме УНЧ.

Тесты могут пригодиться, если вы собираетесь использовать эту микросхему УНЧ для своего усилителя или сделаете мощную портативную колонку с предусилителем и мощным аккумулятором.

Температура на радиатор чипа. Радиатор тут - это хорошо. А ведь есть варианты этой платы и без радиатора.

Температура на резисторах:

Если тут при 9 Ваттах такая температура, то что же будет при тестировании 100 ваттного усилка?

Тест на синусоиду. На вход подаем синусоиду 1000 Гц и смотрим осциллографом, что имеем на выходе усилителя.

18+ Читателям с неустойчивой психикой не смотреть

Вход усилителя:


Выход при очень маленькой громкости:


Средний уровень громкости:


Синусоида на максимуме. Чип УНЧ на грани отключения от перегрева.


Я удивился результатам - у младших PAM8403/PAM8406 на выходе с синусоидой все ок. Может перепутал что-то при измерения. Полез в инет и нашел видеообзор подобной микросхемы - . Правда там товаришь не подключал к выходу нагрузку и без предусилка тесты проводил (не вывел микросхему на предельные режимы).


После завершения тестов решил все облагородить. Компоненты для сборки:

Роутер используется как . Прошил аналогично обзору. Так же был сделан переключатель типа тумблер на обычный линейный вход.
Корпус куплен оффлайн за 400 руб - самый дешевый по отношения цена-размер-качество.


Получилось так:




Первоначально был установлен DC-преобразватель 12->5 В на основе ШИМ контроллера. Но пришлось установить второй блок питания на 5 В по двум причинам:
1. Помехи. Убрал земляные петли, но какие-то помехи (возможно от преобразователя) остались.
2. В случае перегруза БП отключается по защите - роутер перегружается и это не хорошо - долго он перегружается.

Итог:






Моя мини Hi-Fi система:


Для моих задач (озвучить ванную и коридор) мощности БП и качества звука от УНЧ вполне хватает.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +35 Добавить в избранное Обзор понравился +25 +59

Импульсный блок питания для УНЧ сконструирован для обеспечения напряжением питания двух канальный УМЗЧ. БП рассчитан на работу усилителя с выходной мощностью 200 Вт на каждый канал. Данное устройство состоит из двух печатных плат. На одной плате реализован фильтр сетевого напряжения, электромагнитное реле, трансформатор, диодный мост с фильтрующим конденсатором 1000 мкФ х 25v в его цепи. На другой плате собран модуль управления, трансформатор выпрямителя, а также в цепи фильтра конденсаторы и дроссели.

Биполярные транзисторы КТ626, а также мощные 2SK1120 MOSFET либо КП707В2 должны быть установлены на радиаторах с достаточной площадью рассеивания тепла. Наиболее эффективными радиаторами охлаждения являются теплоотводы из толстого алюминия, прошедшие фрезерную обработку. Их эффективность заключается в том, что помимо охлаждения электронных компонентов, они еще являются боковыми элементами корпуса усилителя. Модуль управления мощными выходными ключами смонтирован на небольшой самостоятельной плате, которая в свою очередь вмонтирована в модуль выпрямителя.

Модернизация ИБП

Чтобы обеспечить более корректную и надежную работу конструкции, импульсный блок питания для УНЧ был несколько модернизирован. В частности во вторичных обмотках трансформатора были установлены шунты в виде подавляющей помехи RC-цепи. Также была увеличена емкость фильтрующих конденсаторов до 10000 мкФ х 50v и зашунтированны конденсаторами 3,3 мкф 63v. Которые имеют очень малые потери и высокое сопротивление изоляции. Защита на входе не была задействована, но в случае необходимости ее можно применить в качестве защиты от пикового тока. Для этого нужно подать сигнал на вход из цепи шунта либо от трансформатора по току.

Предупреждение

Особое внимание! Все силовые тракты данного блока питания, за исключением вторичных цепей, находятся по высоким потенциалом сетевого напряжения, представляющего опасность для жизни! В процессе налаживания конструкции необходимо соблюдать максимально возможную осторожность. Желательно при настроечных работах, устройство подключить к сети через разделительный трансформатор.

Перед тем как впервые запустить импульсный блок питания, предохранитель на 2А в цепи напряжения 320v устанавливать пока не нужно. Вначале нужно произвести отладку схемы управления, а уже потом на место предохранителя 2А устанавливается лампа накаливания 220v мощностью 60 Вт. Но наиболее эффективный способ, при котором гарантируется целостность транзисторов — это включить устройство через понижающий напряжение трансформатор. Только когда полностью будет выполнены наладочные работы, тогда предохранитель ставится на место. Теперь импульсный блок питания можно испытать с нагрузкой.


На снимке: модуль инвертора, выпрямителя и цепи фильтров


На снимке: модуль фильтра сетевого напряжения и выпрямителя


На снимке: компоновка силовых ключей и диодов

Трансформатор

Трансформатор Т1 намотан на трех кольцах диаметром 45 мм из феррита 2000НМ1. Первичная обмотка содержит 2×46 витков изолированного провода 0,75 мм2 (мотается сразу двумя проводами). Вторичная обмотка намотана косой из 16 проводов диаметром 0,8 мм. Она содержит шесть витков, после намотки она делится на две группы, начала одной группы соединяются с конном другой. Дроссели DB3 и DR2 намотаны на ферритовом стержне 8 мм и выполнены проводом D=1,2 мм.

Импульсные источники питания широко используются в современной радиоэлектронной аппаратуре. Вниманию читателей предлагается импульсный блок питания мощностью 800 Вт. От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе — вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что немного упрощает конструкцию и повышает КПД устройства. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство. Автором он используется для питания двухканального умощненного варианта УМЗЧ.

Входное напряжение ИБП — 180...240 В, номинальное выходное напряжение (при входном 220 В) — 2x50 В, максимальная мощность нагрузки — 800 Вт, рабочая частота преобразователя — 90 кГц. Принципиальная схема ИБП изображена на рис. 4.47. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр CI, LI, С2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1...VD4, пульсации сглаживаются конденсатором СЗ. Выпрямленное постоянное напряжение (около 310 В) используется для питания высокочастотного преобразователя.

Устройство управления преобразователем выполнено на микросхемах DD1...DD3. Питается оно от отдельного стабилизированного источника, состоящего из понижающего трансформатора Т1, выпрямителя VD5 и стабилизатора напряжения на транзисторах VT1, VT2 и стабилитроне VD6. На элементах DD1.1, DDI.2 собран задающий генератор, вырабатывающий импульсы с частотой следования около 360 кГц.

Далее следует делитель частоты на 4, выполненный на триггерах микросхемы DD2. С помощью элементов DD3.1, DD3.2 создаются дополнительные паузы между импульсами. Паузой является не что иное, как уровень логического 0 на выходах этих элементов, появляющийся при наличии уровня логической 1 на выходах элемента DDI.2 и триггеров DD2.1 и DD2.2. Напряжение низкого уровня на выходе DD3.1 (DD3.2) блокирует DD1.3 (DD1.4) в «закрытом» состоянии (на выходе — уровень логической 1). Длительность паузы равна 1/3 от длительности импульса напряжений на выводах 1 DD3.1 и 13 DD3.2, чего вполне достаточно для закрывания ключевого транзистора. С выходов элементов DD1.3 и DDI.4 окончательно сформированные импульсы поступают на транзисторные ключи (VT5, VT6), которые через резисторы RIO, R11 управляют затворами мощных полевых транзисторов VT9, VT10 (см. рис. 4.48).

Импульсы с прямого и инверсного выходов триггера DD2.2 поступают на входы устройства, выполненного на транзисторах VT3, VT4, VT7, VT8. Открываясь поочередно, VT3 и VT7, VT4 и VT8 создают условия для быстрой разрядки входных емкостей ключевых транзисторов VT9, VT10, т.е. их быстрого закрывания. В цепи затворов транзисторов VT9 и VT10 включены резисторы относительно большого сопротивления R10 и R11. Вместе с емкостью затворов они образуют фильтры нижних частот, уменьшающие уровень гармоник при открывании ключей.

С этой же целью введены элементы VD9...VD12, R16, R17, С12, С13. В стоковые цепи транзисторов VT9, VT10 включена первичная обмотка трансформатора Т2. Выпрямители выходного напряжения выполнены по мостовой схеме на диодах VD13...VD20, что несколько уменьшает КПД устройства, но значительно (более чем в пять раз) снижает уровень пульсации на выходе ИБП. Важно отметить, что форма колебаний, почти прямоугольная при максимальной нагрузке, плавно переходит в близкую к синусоидальной при уменьшении мощности до 10...20 Вт, что положительно сказывается на уровне шумов питаемого от этого блока УМЗЧ при малой громкости. Выпрямленное напряжение обмотки IV трансформатора Т2 используют для питания вентиляторов.

В устройстве применены конденсаторы К73-17 (С1, С2, С4), К50-17 (СЗ), МБМ (С12, С13), К73-16 (С14...С21, С24, С25), К50-35 (С5...С7), КМ (остальные). Вместо указанных на схеме допустимо применение микросхем серий К176, К564. Диоды Д246 (VD1...VD4) заменимы на любые другие, рассчитанные на прямой ток не менее 5 А и обратное напряжение не менее 350 В (КД202К, КД202М, КД202Р, КД206Б, Д247Б), или диодный выпрямительный мост с такими же параметрами, диоды КД2997А (VD13...VD20) — на КД2997Б, КД2999Б, стабилитрон Д810 (VD6) - на Д814В. В качестве VT1 можно использовать любые транзисторы серий КТ817, КТ819, в качестве VT2...VT4 и VT5, VT6 — соответственно, любые из серий КТ315, КТ503, КТ3102 и КТ361, КТ502, КТ3107, на месте VT9, VT10 - КП707В1, КП707Е1. Транзисторы КТ3102Ж (VT7, VT8) заменять не рекомендуется.

Трансформатор Т1 — ТС-10-1 или любой другой с напряжением вторичной обмотки 11...13 В при токе нагрузки не менее 150 мА. Катушку L1 сетевого фильтра наматывают на ферритовом (М2000НМ1) кольце типоразмера К31х18,5х7 проводом ПЭВ-1-1.0 (2x25 витков), трансформатор Т2 — на трех склеенных вместе кольцах из феррита той же марки, но типоразмера К45х28х12. Обмотка I содержит 2x42 витка провода ПЭВ-2-1,0 (наматывают в два провода), обмотки II и III — по 7 витков (в пять проводов ПЭВ-2-0,8), обмотка IV — 2 витка ПЭВ-2-0,8. Между обмотками прокладывают три слоя изоляции из фторопластовой ленты.

Магнитопроводы дросселей L2, L3 — ферритовые (1500НМЗ) стержни диаметром 6 и длиной 25 мм (подстроечники от броневых сердечников Б48). Обмотки содержат по 12 витков провода ПЭВ-1-1,5. Транзисторы VT9, VT10 устанавливают на теплоотводах с вентиляторами, применяемых для охлаждения микропроцессоров Pentium (подойдут аналогичные узлы и от процессоров 486). Диоды VD13...VD20 закрепляют на теплоотводах с площадью поверхности около 200 см2.

При монтаже ИБП следует стремиться к тому, чтобы все соединения были возможно короче, а в силовой части использовать провод возможно большего сечения. ИБП желательно заключить в металлический экран и соединить его с выводом 0 В выхода источника, как показано на рис. 4.49. Общий провод силовой части с экраном соединяться не должен. Поскольку ИБП не оснащен устройством защиты от короткого замыкания и перегрузки, в цепи питания необходимо включить предохранители на 10 А. В налаживании описанный ИБП практически не нуждается. Важно только правильно сфазировать половины первичной обмотки трансформатора Т2.

При исправных деталях и отсутствии ошибок в монтаже блок начинает работать сразу после включения в сеть. Если необходимо, частоту преобразователя подстраивают подбором резистора R3. Для повышения надежности ИБП желательно эксплуатировать его с УМЗЧ, в котором предусмотрена сквозная продувка вентилятором.

Может быть кого-нибудь заинтересует такой девайс — встроенный в системный блок УНЧ 2х25 Вт.

Внешний вид девайса

Хорошая мать, хорошая звуковая карта, хорошие, но пассивные колонки…

В итоге на рабочем месте (у компа) нет приличного звука. Долго извращался со всякими внешними усилителями, которые занимают место на столе, требуют дополнительную розетку, провода, и всякие прочие неудобности. В конце концов надоело, и сделал встроенный УНЧ на базе мс TDA8560Q — автомобильный двухканальный усилитель 2х40 Вт на нагрузке 2 Ома. На 4-омной нагрузке мощность чуть меньше — 2х25 Вт. Обвязка — пара электролитов по питанию, входные делители (25 Вт лишковато, однако), 4 кондерчика в развязку по входу и в цепи питания, и если совсем уж пальцы веером — транзистор для «мягкого» запуска (чтобы не было щелчков при включении).

Все это очень удобно разместилось на плате формата стандартной PCI-ной карточки, которую вставил в свободный слот на мамке. Чтобы не грузить дорожки материнки, питание (бортовые 12 вольт) подал через отдельный разъем (как на всех IDE-устройствах — сидюках, винтах, и современных видеокартах). Под рукой была крепежная планка от старой видеокарточки S3-Trio, так что вообще ничего напильником делать не пришлось.

В качестве выходного разъема применил розетку DRB-9 (аналогичную разъему COM-порта, только «маму»). Не очень удобно, что провода от обеих колонок пришлось загнать в один разъем, но зато «конструктив» девайса получился очень простой.

Усилитель соединил с выходом звуковой карты обычным аудио-шнурком от сидюка (только припаял с одной стороны разъем «мини-джек» диаметром 3,5мм).

Для охлаждения микросхемы усилителя отлично подошел стандартный радиатор от старенького процессора, толи 486-го, толи от первого пня (высотой всего 12 мм). На него, при желании, даже кулер можно поставить (на плате предусмотрел разъем). Но, как показал месяц активной эксплуатации, этого не требуется, температура радиатора не превышает 40-50 градусов даже при длительной работе и на большой мощности.

(нарисовано в чертилке SLayout-4). Схема — стандартная из даташит на микросхему, но если нужно, выложу дополнительно. Единственное отличие — на входе каждого канала сделал делители 6:1 (5,6 кОм и 1 кОм), иначе уровень сигнала со звуковухи лишковат.

Номиналы всех деталей нарисованы на печатке.

Кстати, для того, чтобы установить радиатор, мелкосхему пришлось уложить «на спину» — металлической подложкой в сторону радиатора, соответственно пришлось зеркально переформовать выводы микросхемы (выгнуть в другую сторону).

Если будете использовать крепежную планку от другой карты (допустим, от доп. разъема СОМ-порта), то возможно придется изменить место выходного разъема (сдвинуть его вверх или вниз по плате). В крайнем случае можно использовать стандартную планку-заглушку, но придется полчасика послесарить, и выпилить отверстие под выходной разъем.

Разъем для подачи питания на усилитель выпаял с платы какого-то древнего винчестера. Можно взять с 5-дюймового дисковода или с сидюка.

Надеюсь, что с повторением этой полезной штуковины проблем не будет.

Единственный совет: не забывайте, что ток БП компа по 12 вольтам всего несколько ампер (конкретно смотрите на своем БП), и поэтому не старайтесь «выкачать» из TDA-шки все, что она может выдать. Расчет простой — 1 ампер потребляемого тока может обеспечить выходную мощность усилителя примерно по 5 Вт на канал, соответственно 2 ампера — 2х10 Вт, и т.д. У меня блок питания в компе 450 Вт, способен выдавать до 14 ампер по 12 вольтам, так что 4-5 ампер «на сторону» не оказывают отрицательного влияния на работу компьютера.

Не жадничайте, и всё у вас будет в шоколаде!

Другие статьи посвящённые постройке этого УНЧ.

Принципиальная схема блока питания.

Блок питания собран по одной из стандартных схем. Для питания оконечных усилителей выбрано двухполярное питание. Это позволяет использовать недорогие высококачественные интегральные усилители и устраняет ряд проблем связанных с пульсациями напряжения питания и переходными процессами возникающими при включении. https://сайт/


Блок питания должен обеспечивать питание трёх микросхем и одного светодиода. В качестве оконечных усилителей мощности используются две микросхемы TDA2030, а в качестве регулятора громкости, сетеробазы и тембра – одна микросхема TDA1524A.


Электрическая схема блока питания.



VD3... VD6 – КД226


C1 – 680mkFx25V

C3... C6 – 1000mkFx25V



На диодах VD3… VD6 собран двухполярный двухполупериодный выпрямитель со средней точкой. Такая схема включения снижает падение напряжения на диодах выпрямителя в два раза по сравнению с обычным мостовым выпрямителем, так как в каждый полупериод ток течет только через один диод.

В качестве фильтра выпрямленного напряжения применены электролитические конденсаторы С3… С6.


На микросхеме IC1 собран стабилизатор напряжения для питания схемы электронного регулятора громкости, стереобазы и тембра. Стабилизатор собран по типовой схеме.

Применение микросхемы LM317 обусловлено лишь тем, что она оказалась в наличии. Здесь можно применить любой интегральный стабилизатор.

Защитный диод VD2, обозначенный пунктирной линией, при выходном напряжении на микросхеме LM317 ниже 25 Вольт применять не обязательно. Но, если входное напряжение микросхемы 25 Вольт и выше, а резистор R3 подстроечный, то лучше диод всё же установить.

Величина резистора R3 определяет выходное напряжение стабилизатора. Во время макетирования, я впаял вместо него подстроечный резистор, установил с его помощью напряжение около 9 Вольт на выходе стабилизатора, а затем измерил сопротивление этого подстроечинка, чтобы можно было установить вместо него постоянный резистор.

Выпрямитель, питающий стабилизатор, выполнен по упрощённой однополупериодной схеме, что продиктовано чисто экономическими соображениями. Четыре диода и один конденсатор стоят дороже, чем один диод и один конденсатор чуть большей ёмкости.

Ток, потребляемый микросхемой TDA1524A всего 35мА, поэтому такая схема вполне оправдана.


Светодиод HL1 – индикатор включения питания усилителя. На плате блока питания установлен балластный резистор этого индикатора – R1 с номинальным сопротивлением 500 Ом. От сопротивления этого резистора зависит ток светодиода. Я использовал зелёный светодиод рассчитанный на 20мА. При использовании красного светодиода типа АЛ307 на ток 5мА, сопротивление резистора можно увеличить в 3-4 раза.

Печатная плата.

Печатная плата (ПП) спроектирована, исходя из конструкции конкретного усилителя и имеющихся в наличии электроэлементов. У платы есть всего одно отверстие для крепления, расположенное в самом центре ПП, что обусловлено не совсем обычной конструкцией .


Для увеличения сечения медных дрожек и экономии хлорного железа, свободные от дорожек места на ПП были залиты с использованием инструмента «Полигон".

Увеличение ширины дорожек также предотвращает отслаивание фольги от стеклотекстолита при нарушении теплового режима или при многократной перепайке радиодеталей.


По чертежу, приведённому выше, была изготовлена печатная плата из фольгированного стеклотекстолита сечением 1мм.

Для присоединения проводов к печатной плате в отверстиях платы были расклёпаны медные штырьки (солдатики).


This movie requires Flash Player 9

А это уже собранная печатная плата блока питания.

Чтобы увидеть все шесть видов, потяните картинку курсором или используйте кнопочки со стрелками, расположенными в нижней части картинки.


Сеточка на медных дорожках ПП, это результат использования вот технологии.

Когда плата собрана её желательно испытать ещё до подключения оконечных усилителей и блока регуляторов. Для испытания блока питания нужно подключить к его выходам эквивалент нагрузки, как на приведённой схеме.

В качестве нагрузки выпрямителей +12,8 и -12,8 Вольт подойдут резисторы типа ПЭВ-10 на 10-15 Ом.

Напряжение на выходе стабилизатора, нагруженного на резистор сопротивлением 100-150 Ом, неплохо посмотреть осциллографом на предмет отсутствия пульсаций при снижении переменного входного напряжения с 14,3 до 10 Вольт.


P.S. Доработка печатной платы.

Во время пусконаладочных работ печатную плату блока питания пришось .

При доработке пришлось разрезать одну дорожку поз.1 и добавить один контакт поз.2 для подключения обмотки трансформатора, питающей стабилизатор напряжения.